文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

攀登发现之墙:利用语义元数据进行综合问题解决。

Scaling the walls of discovery: using semantic metadata for integrative problem solving.

作者信息

Manning Maurice, Aggarwal Amit, Gao Kevin, Tucker-Kellogg Greg

机构信息

Lilly Singapore Centre for Drug Discovery, 8A Biomedical Grove #02-05, Immunos, Biopolis, 138648, Singapore.

出版信息

Brief Bioinform. 2009 Mar;10(2):164-76. doi: 10.1093/bib/bbp007.


DOI:10.1093/bib/bbp007
PMID:19304872
Abstract

Current data integration approaches by bioinformaticians frequently involve extracting data from a wide variety of public and private data repositories, each with a unique vocabulary and schema, via scripts. These separate data sets must then be normalized through the tedious and lengthy process of resolving naming differences and collecting information into a single view. Attempts to consolidate such diverse data using data warehouses or federated queries add significant complexity and have shown limitations in flexibility. The alternative of complete semantic integration of data requires a massive, sustained effort in mapping data types and maintaining ontologies. We focused instead on creating a data architecture that leverages semantic mapping of experimental metadata, to support the rapid prototyping of scientific discovery applications with the twin goals of reducing architectural complexity while still leveraging semantic technologies to provide flexibility, efficiency and more fully characterized data relationships. A metadata ontology was developed to describe our discovery process. A metadata repository was then created by mapping metadata from existing data sources into this ontology, generating RDF triples to describe the entities. Finally an interface to the repository was designed which provided not only search and browse capabilities but complex query templates that aggregate data from both RDF and RDBMS sources. We describe how this approach (i) allows scientists to discover and link relevant data across diverse data sources and (ii) provides a platform for development of integrative informatics applications.

摘要

生物信息学家当前的数据集成方法通常涉及通过脚本从各种公共和私有数据存储库中提取数据,每个存储库都有独特的词汇表和模式。然后,必须通过解决命名差异并将信息收集到单一视图的冗长乏味过程,对这些单独的数据集进行规范化处理。使用数据仓库或联合查询来整合如此多样的数据,会增加显著的复杂性,并且在灵活性方面存在局限性。完全语义集成数据的替代方法需要在映射数据类型和维护本体方面付出巨大且持续的努力。相反,我们专注于创建一种数据架构,利用实验元数据的语义映射,以支持科学发现应用的快速原型设计,实现两个目标:降低架构复杂性,同时仍利用语义技术提供灵活性、效率和更完整的数据关系特征。我们开发了一个元数据本体来描述我们的发现过程。然后通过将现有数据源中的元数据映射到该本体中,创建了一个元数据存储库,生成RDF三元组来描述实体。最后,设计了一个到该存储库的接口,它不仅提供搜索和浏览功能,还提供复杂的查询模板,可聚合来自RDF和RDBMS源的数据。我们描述了这种方法如何(i)允许科学家跨不同数据源发现和链接相关数据,以及(ii)为集成信息学应用的开发提供一个平台。

相似文献

[1]
Scaling the walls of discovery: using semantic metadata for integrative problem solving.

Brief Bioinform. 2009-3

[2]
YeastHub: a semantic web use case for integrating data in the life sciences domain.

Bioinformatics. 2005-6

[3]
Biological knowledge management: the emerging role of the Semantic Web technologies.

Brief Bioinform. 2009-7

[4]
Linked data and provenance in biological data webs.

Brief Bioinform. 2009-3

[5]
Towards a semantic medical Web: HealthCyberMap's tool for building an RDF metadata base of health information resources based on the Qualified Dublin Core Metadata Set.

Med Sci Monit. 2002-7

[6]
Combining Semantic Web technologies with Multi-Agent Systems for integrated access to biological resources.

J Biomed Inform. 2008-10

[7]
yOWL: an ontology-driven knowledge base for yeast biologists.

J Biomed Inform. 2008-10

[8]
OQAFMA Querying agent for the Foundational Model of Anatomy: a prototype for providing flexible and efficient access to large semantic networks.

J Biomed Inform. 2003-12

[9]
A semantic web ontology for small molecules and their biological targets.

J Chem Inf Model. 2010-5-24

[10]
Bio2RDF: towards a mashup to build bioinformatics knowledge systems.

J Biomed Inform. 2008-10

引用本文的文献

[1]
A Semantic-Based Approach for Managing Healthcare Big Data: A Survey.

J Healthc Eng. 2020

[2]
Electrocorticographic mapping of expressive language function without requiring the patient to speak: A report of three cases.

Epilepsy Behav Case Rep. 2016-3-9

[3]
Network-based drug discovery by integrating systems biology and computational technologies.

Brief Bioinform. 2012-8-9

[4]
Informatics in radiology: an information model of the DICOM standard.

Radiographics. 2010-10-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索