Suppr超能文献

扩展用于生物学研究的遗传密码。

Expanding the genetic code for biological studies.

作者信息

Wang Qian, Parrish Angela R, Wang Lei

机构信息

The Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.

出版信息

Chem Biol. 2009 Mar 27;16(3):323-36. doi: 10.1016/j.chembiol.2009.03.001.

Abstract

Using an orthogonal tRNA-synthetase pair, unnatural amino acids can be genetically encoded with high efficiency and fidelity, and over 40 unnatural amino acids have been site-specifically incorporated into proteins in Escherichia coli, yeast, or mammalian cells. Novel chemical or physical properties embodied in these amino acids enable new means for tailored manipulation of proteins. This review summarizes the methodology and recent progress in expanding this technology to eukaryotic cells. Applications of genetically encoded unnatural amino acids are highlighted with reports on labeling and modifying proteins, probing protein structure and function, identifying and regulating protein activity, and generating proteins with new properties. Genetic incorporation of unnatural amino acids provides a powerful method for investigating a wide variety of biological processes both in vitro and in vivo.

摘要

利用一对正交的tRNA-合成酶,可以高效且保真地对非天然氨基酸进行遗传编码,并且已有40多种非天然氨基酸被位点特异性地掺入大肠杆菌、酵母或哺乳动物细胞的蛋白质中。这些氨基酸所具有的新型化学或物理特性为蛋白质的定制操作提供了新方法。本综述总结了将该技术扩展到真核细胞的方法及最新进展。通过对蛋白质进行标记和修饰、探究蛋白质结构与功能、鉴定和调节蛋白质活性以及生成具有新特性的蛋白质的相关报道,突出了遗传编码非天然氨基酸的应用。非天然氨基酸的遗传掺入为在体外和体内研究多种生物学过程提供了一种强大的方法。

相似文献

1
Expanding the genetic code for biological studies.
Chem Biol. 2009 Mar 27;16(3):323-36. doi: 10.1016/j.chembiol.2009.03.001.
2
Adding amino acids to the genetic repertoire.
Curr Opin Chem Biol. 2005 Dec;9(6):548-54. doi: 10.1016/j.cbpa.2005.10.011. Epub 2005 Nov 2.
3
A chemical toolkit for proteins--an expanded genetic code.
Nat Rev Mol Cell Biol. 2006 Oct;7(10):775-82. doi: 10.1038/nrm2005. Epub 2006 Aug 23.
4
Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome.
Nature. 2010 Mar 18;464(7287):441-4. doi: 10.1038/nature08817. Epub 2010 Feb 14.
5
Expanding and reprogramming the genetic code of cells and animals.
Annu Rev Biochem. 2014;83:379-408. doi: 10.1146/annurev-biochem-060713-035737. Epub 2014 Feb 10.
6
Expanding the genetic code.
Annu Rev Biophys Biomol Struct. 2006;35:225-49. doi: 10.1146/annurev.biophys.35.101105.121507.
7
An expanding genetic code.
Methods. 2005 Jul;36(3):227-38. doi: 10.1016/j.ymeth.2005.04.010.
9
Engineering the Genetic Code in Cells and Animals: Biological Considerations and Impacts.
Acc Chem Res. 2017 Nov 21;50(11):2767-2775. doi: 10.1021/acs.accounts.7b00376. Epub 2017 Oct 6.
10
Practical Approaches to Genetic Code Expansion with Aminoacyl-tRNA Synthetase/tRNA Pairs.
Chimia (Aarau). 2024 Feb 28;78(1-2):22-31. doi: 10.2533/chimia.2024.22.

引用本文的文献

1
Computationally Assisted Noncanonical Amino Acid Incorporation.
ACS Cent Sci. 2024 Dec 16;11(1):84-90. doi: 10.1021/acscentsci.4c01544. eCollection 2025 Jan 22.
3
Noncanonical Amino Acids: Bringing New-to-Nature Functionalities to Biocatalysis.
Chem Rev. 2024 Oct 9;124(19):10877-10923. doi: 10.1021/acs.chemrev.4c00136. Epub 2024 Sep 27.
4
Engineering of Recombinant Human Papillomavirus 16 L1 Protein for Incorporation with -Azido--Phenylalanine.
J Microbiol Biotechnol. 2024 Sep 28;34(9):1926-1932. doi: 10.4014/jmb.2407.07033. Epub 2024 Aug 9.
5
Cracking the Code: Reprogramming the Genetic Script in Prokaryotes and Eukaryotes to Harness the Power of Noncanonical Amino Acids.
Chem Rev. 2024 Sep 25;124(18):10281-10362. doi: 10.1021/acs.chemrev.3c00878. Epub 2024 Aug 9.
6
Sequence-based prediction of the intrinsic solubility of peptides containing non-natural amino acids.
Nat Commun. 2023 Nov 17;14(1):7475. doi: 10.1038/s41467-023-42940-w.
7
An unnatural enzyme with endonuclease activity towards small non-coding RNAs.
Nat Commun. 2023 Jun 24;14(1):3777. doi: 10.1038/s41467-023-39105-0.
8
Challenges and Perspectives in Target Identification and Mechanism Illustration for Chinese Medicine.
Chin J Integr Med. 2023 Jul;29(7):644-654. doi: 10.1007/s11655-023-3629-9. Epub 2023 Feb 21.
9
High-Throughput Aminoacyl-tRNA Synthetase Engineering for Genetic Code Expansion in Yeast.
ACS Synth Biol. 2022 Jul 15;11(7):2284-2299. doi: 10.1021/acssynbio.1c00626. Epub 2022 Jul 6.

本文引用的文献

1
Biosynthesis of a site-specific DNA cleaving protein.
J Am Chem Soc. 2008 Oct 8;130(40):13194-5. doi: 10.1021/ja804653f. Epub 2008 Sep 13.
2
Immunochemical termination of self-tolerance.
Proc Natl Acad Sci U S A. 2008 Aug 12;105(32):11276-80. doi: 10.1073/pnas.0804157105. Epub 2008 Aug 6.
3
Site-specific incorporation of methyl- and acetyl-lysine analogues into recombinant proteins.
Angew Chem Int Ed Engl. 2008;47(34):6399-401. doi: 10.1002/anie.200802336.
5
Adding l-lysine derivatives to the genetic code of mammalian cells with engineered pyrrolysyl-tRNA synthetases.
Biochem Biophys Res Commun. 2008 Jul 11;371(4):818-22. doi: 10.1016/j.bbrc.2008.04.164. Epub 2008 May 8.
6
Chemically ubiquitylated histone H2B stimulates hDot1L-mediated intranucleosomal methylation.
Nature. 2008 Jun 5;453(7196):812-6. doi: 10.1038/nature06906. Epub 2008 Apr 30.
7
New methods enabling efficient incorporation of unnatural amino acids in yeast.
J Am Chem Soc. 2008 May 14;130(19):6066-7. doi: 10.1021/ja800894n. Epub 2008 Apr 22.
8
Unnatural amino acid replacement in a yeast G protein-coupled receptor in its native environment.
Biochemistry. 2008 May 20;47(20):5638-48. doi: 10.1021/bi701866e. Epub 2008 Apr 18.
9
Genetically encoding N(epsilon)-acetyllysine in recombinant proteins.
Nat Chem Biol. 2008 Apr;4(4):232-4. doi: 10.1038/nchembio.73. Epub 2008 Feb 17.
10
A genetically encoded diazirine photocrosslinker in Escherichia coli.
Chembiochem. 2007 Dec 17;8(18):2210-4. doi: 10.1002/cbic.200700460.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验