Chemistry, Materials, Earth and Life Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
Geochem Trans. 2009 Mar 26;10:4. doi: 10.1186/1467-4866-10-4.
Carbon storage in deep saline reservoirs has the potential to lower the amount of CO2 emitted to the atmosphere and to mitigate global warming. Leakage back to the atmosphere through abandoned wells and along faults would reduce the efficiency of carbon storage, possibly leading to health and ecological hazards at the ground surface, and possibly impacting water quality of near-surface dilute aquifers. We use static equilibrium and reactive transport simulations to test the hypothesis that perturbations in water chemistry associated with a CO2 gas leak into dilute groundwater are important measures for the potential release of CO2 to the atmosphere. Simulation parameters are constrained by groundwater chemistry, flow, and lithology from the High Plains aquifer. The High Plains aquifer is used to represent a typical sedimentary aquifer overlying a deep CO2 storage reservoir. Specifically, we address the relationships between CO2 flux, groundwater flow, detection time and distance. The CO2 flux ranges from 10(3) to 2 x 10(6) t/yr (0.63 to 1250 t/m2/yr) to assess chemical perturbations resulting from relatively small leaks that may compromise long-term storage, water quality, and surface ecology, and larger leaks characteristic of short-term well failure.
For the scenarios we studied, our simulations show pH and carbonate chemistry are good indicators for leakage of stored CO2 into an overlying aquifer because elevated CO2 yields a more acid pH than the ambient groundwater. CO2 leakage into a dilute groundwater creates a slightly acid plume that can be detected at some distance from the leak source due to groundwater flow and CO2 buoyancy. pH breakthrough curves demonstrate that CO2 leaks can be easily detected for CO2 flux >or= 10(4) t/yr within a 15-month time period at a monitoring well screened within a permeable layer 500 m downstream from the vertical gas trace. At lower flux rates, the CO2 dissolves in the aqueous phase in the lower most permeable unit and does not reach the monitoring well. Sustained pumping in a developed aquifer mixes the CO2-affected water with the ambient water and enhances pH signal for small leaks (10(3) t/yr) and reduces pH signal for larger leaks (>or= 10(4) t/yr).
The ability to detect CO2 leakage from a storage reservoir to overlying dilute groundwater is dependent on CO2 solubility, leak flux, CO2 buoyancy, and groundwater flow. Our simulations show that the most likely places to detect CO2 are at the base of the confining layer near the water table where CO2 gas accumulates and is transported laterally in all directions, and downstream of the vertical gas trace where groundwater flow is great enough to transport dissolved CO2 laterally. Our simulations show that CO2 may not rise high enough in the aquifer to be detected because aqueous solubility and lateral groundwater transport within the lower aquifer unit exceeds gas pressure build-up and buoyancy needed to drive the CO2 gas upwards.
在深层盐水储层中储存碳,有可能减少排放到大气中的 CO2 量,并减轻全球变暖。废弃的井和断层沿线的 CO2 回灌会降低碳储存的效率,可能导致地面出现健康和生态危害,并可能影响近地表稀释含水层的水质。我们使用静态平衡和反应传输模拟来测试以下假设:与 CO2 气体泄漏到稀释地下水中相关的水化学变化是 CO2 向大气潜在释放的重要措施。模拟参数受地下水化学、流动和高平原含水层岩性的约束。高平原含水层用于代表覆盖深层 CO2 储存库的典型沉积含水层。具体来说,我们解决了 CO2 通量、地下水流动、检测时间和距离之间的关系。CO2 通量范围从 103 到 2x106 吨/年(0.63 到 1250 吨/平方米/年),以评估可能危及长期储存、水质和地表生态的小泄漏以及特征为短期井故障的较大泄漏所导致的化学扰动。
对于我们研究的情景,我们的模拟表明 pH 值和碳酸盐化学是储存的 CO2 泄漏到上覆含水层的良好指标,因为升高的 CO2 会产生比环境地下水更酸性的 pH 值。CO2 泄漏到稀释的地下水中会产生一个略带酸性的羽流,由于地下水流动和 CO2 的浮力,可以在泄漏源的一定距离处检测到。pH 值突破曲线表明,在监测井中监测到 CO2 泄漏,监测井位于垂直气体痕迹下游 500 米处的渗透性层内,在 15 个月的时间内,CO2 通量>或= 104 吨/年,可以很容易地检测到 CO2 泄漏。在较低的通量率下,CO2 在最底层渗透性单元中溶解在水相中,不会到达监测井。在发达含水层中持续抽水会将受 CO2 影响的水与环境水混合,并增强小泄漏(103 吨/年)的 pH 值信号,降低大泄漏(>或= 104 吨/年)的 pH 值信号。
从储存库检测到 CO2 泄漏到上覆稀释地下水的能力取决于 CO2 的溶解度、泄漏通量、CO2 浮力和地下水流动。我们的模拟表明,最有可能检测到 CO2 的地方是靠近地下水面的隔水层底部,那里 CO2 气体积聚并向各个方向横向运输,以及垂直气体痕迹的下游,那里地下水流动足够大,可以将溶解的 CO2 横向运输。我们的模拟表明,CO2 可能不会在含水层中上升到足够高的高度以被检测到,因为水相中 CO2 的溶解度和侧向地下水运输以及低于含水层单元的气体压力积聚和浮力足以驱动 CO2 气体向上。