Suppr超能文献

蚂蚁真菌养殖进化过程中生物防治能力下降与化学害虫管理增强

Reduced biological control and enhanced chemical pest management in the evolution of fungus farming in ants.

作者信息

Fernández-Marín Hermógenes, Zimmerman Jess K, Nash David R, Boomsma Jacobus J, Wcislo William T

机构信息

Smithsonian Tropical Research Institute, Balboa, Ancón, Panama.

出版信息

Proc Biol Sci. 2009 Jun 22;276(1665):2263-9. doi: 10.1098/rspb.2009.0184. Epub 2009 Mar 18.

Abstract

To combat disease, most fungus-growing ants (Attini) use antibiotics from mutualistic bacteria (Pseudonocardia) that are cultured on the ants' exoskeletons and chemical cocktails from exocrine glands, especially the metapleural glands (MG). Previous work has hypothesized that (i) Pseudonocardia antibiotics are narrow-spectrum and control a fungus (Escovopsis) that parasitizes the ants' fungal symbiont, and (ii) MG secretions have broad-spectrum activity and protect ants and brood. We assessed the relative importance of these lines of defence, and their activity spectra, by scoring abundance of visible Pseudonocardia for nine species from five genera and measuring rates of MG grooming after challenging ants with disease agents of differing virulence. Atta and Sericomyrmex have lost or greatly reduced the abundance of visible bacteria. When challenged with diverse disease agents, including Escovopsis, they significantly increased MG grooming rates and expanded the range of targets. By contrast, species of Acromyrmex and Trachymyrmex maintain abundant Pseudonocardia. When challenged, these species had lower MG grooming rates, targeted primarily to brood. More elaborate MG defences and reduced reliance on mutualistic Pseudonocardia are correlated with larger colony size among attine genera, raising questions about the efficacy of managing disease in large societies with chemical cocktails versus bacterial antimicrobial metabolites.

摘要

为了对抗疾病,大多数培育真菌的蚂蚁(切叶蚁亚科)会利用共生细菌(假诺卡氏菌)产生的抗生素,这些细菌生长在蚂蚁的外骨骼上,同时还会利用外分泌腺,尤其是后胸侧板腺(MG)分泌的化学混合物。此前的研究推测:(i)假诺卡氏菌产生的抗生素具有窄谱性,可控制一种寄生于蚂蚁真菌共生体的真菌(埃斯科沃普氏菌);(ii)后胸侧板腺的分泌物具有广谱活性,可保护蚂蚁及其幼虫。我们通过统计五个属九个物种可见假诺卡氏菌的数量,并在向蚂蚁接种不同毒力的病原体后测量它们清洁后胸侧板腺的频率,来评估这些防御机制的相对重要性及其活性谱。切叶蚁属和丝切叶蚁属已经失去或极大地减少了可见细菌的数量。当受到包括埃斯科沃普氏菌在内的多种病原体攻击时,它们会显著提高清洁后胸侧板腺的频率,并扩大防御目标范围。相比之下,顶切叶蚁属和糙切叶蚁属的物种保留了大量的假诺卡氏菌。受到攻击时,这些物种清洁后胸侧板腺的频率较低,主要针对幼虫。在切叶蚁亚科各属中,更精细的后胸侧板腺防御机制以及对共生假诺卡氏菌的依赖减少与蚁群规模较大相关,这引发了关于在大型蚁群中利用化学混合物与细菌抗菌代谢产物来管理疾病效果的疑问。

相似文献

1
Reduced biological control and enhanced chemical pest management in the evolution of fungus farming in ants.
Proc Biol Sci. 2009 Jun 22;276(1665):2263-9. doi: 10.1098/rspb.2009.0184. Epub 2009 Mar 18.
2
Broad Escovopsis-inhibition activity of Pseudonocardia associated with Trachymyrmex ants.
Environ Microbiol Rep. 2014 Aug;6(4):339-45. doi: 10.1111/1758-2229.12132. Epub 2014 Jan 8.
4
Symbiont recruitment versus ant-symbiont co-evolution in the attine ant-microbe symbiosis.
Curr Opin Microbiol. 2012 Jun;15(3):269-77. doi: 10.1016/j.mib.2012.03.001. Epub 2012 Mar 23.
5
Specificity in the symbiotic association between fungus-growing ants and protective Pseudonocardia bacteria.
Proc Biol Sci. 2011 Jun 22;278(1713):1814-22. doi: 10.1098/rspb.2010.2118. Epub 2010 Nov 24.
7
Generalized antifungal activity and 454-screening of Pseudonocardia and Amycolatopsis bacteria in nests of fungus-growing ants.
Proc Natl Acad Sci U S A. 2009 Oct 20;106(42):17805-10. doi: 10.1073/pnas.0904827106. Epub 2009 Sep 22.
8
Convergent evolution of complex structures for ant-bacterial defensive symbiosis in fungus-farming ants.
Proc Natl Acad Sci U S A. 2018 Oct 16;115(42):10720-10725. doi: 10.1073/pnas.1809332115. Epub 2018 Oct 3.
10
Coevolved crypts and exocrine glands support mutualistic bacteria in fungus-growing ants.
Science. 2006 Jan 6;311(5757):81-3. doi: 10.1126/science.1119744.

引用本文的文献

2
From the inside out: Were the cuticular bacteria of fungus-farming ants originally domesticated as gut symbionts?
PNAS Nexus. 2024 Oct 15;3(10):pgae391. doi: 10.1093/pnasnexus/pgae391. eCollection 2024 Oct.
3
Actinomycetes associated with hymenopteran insects: a promising source of bioactive natural products.
Front Microbiol. 2024 Feb 28;15:1303010. doi: 10.3389/fmicb.2024.1303010. eCollection 2024.
4
Ant identity determines the fungi richness and composition of a myrmecochorous seed.
PLoS One. 2024 Mar 7;19(3):e0293377. doi: 10.1371/journal.pone.0293377. eCollection 2024.
5
Anti-Insect Properties of Secondary Metabolites.
Microorganisms. 2023 May 16;11(5):1302. doi: 10.3390/microorganisms11051302.
6
Bee breweries: The unusually fermentative, lactobacilli-dominated brood cell microbiomes of cellophane bees.
Front Microbiol. 2023 Apr 5;14:1114849. doi: 10.3389/fmicb.2023.1114849. eCollection 2023.
7
Environments and Hosts Structure the Bacterial Microbiomes of Fungus-Gardening Ants and their Symbiotic Fungus Gardens.
Microb Ecol. 2023 Aug;86(2):1374-1392. doi: 10.1007/s00248-022-02138-x. Epub 2022 Nov 7.
8
Distinct and enhanced hygienic responses of a leaf-cutting ant toward repeated fungi exposures.
Ecol Evol. 2022 Jul 17;12(7):e9112. doi: 10.1002/ece3.9112. eCollection 2022 Jul.

本文引用的文献

2
Evolutionary aspects of ant-fungus interactions in leaf-cutting ants.
Trends Ecol Evol. 1997 Oct;12(10):386-9. doi: 10.1016/s0169-5347(97)87381-8.
3
Coevolution between attine ants and actinomycete bacteria: a reevaluation.
Evolution. 2008 Nov;62(11):2894-912. doi: 10.1111/j.1558-5646.2008.00501.x. Epub 2008 Aug 26.
6
Major evolutionary transitions in ant agriculture.
Proc Natl Acad Sci U S A. 2008 Apr 8;105(14):5435-40. doi: 10.1073/pnas.0711024105. Epub 2008 Mar 24.
7
Antimicrobial defense shows an abrupt evolutionary transition in the fungus-growing ants.
Evolution. 2008 May;62(5):1252-7. doi: 10.1111/j.1558-5646.2008.00347.x. Epub 2008 Feb 8.
8
Genetic diversity in honey bee colonies enhances productivity and fitness.
Science. 2007 Jul 20;317(5836):362-4. doi: 10.1126/science.1143046.
9
Non-specific association between filamentous bacteria and fungus-growing ants.
Naturwissenschaften. 2007 Oct;94(10):821-8. doi: 10.1007/s00114-007-0262-y. Epub 2007 Jun 1.
10
Antimicrobial defences increase with sociality in bees.
Biol Lett. 2007 Aug 22;3(4):422-4. doi: 10.1098/rsbl.2007.0178.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验