Ma Luyan, Conover Matthew, Lu Haiping, Parsek Matthew R, Bayles Kenneth, Wozniak Daniel J
Microbiology and Immunology, Wake Forest University Health Sciences, Winston-Salem, North Carolina, USA.
PLoS Pathog. 2009 Mar;5(3):e1000354. doi: 10.1371/journal.ppat.1000354. Epub 2009 Mar 27.
Virtually all cells living in multicellular structures such as tissues and organs are encased in an extracellular matrix. One of the most important features of a biofilm is the extracellular polymeric substance that functions as a matrix, holding bacterial cells together. Yet very little is known about how the matrix forms or how matrix components encase bacteria during biofilm development. Pseudomonas aeruginosa forms environmentally and clinically relevant biofilms and is a paradigm organism for the study of biofilms. The extracellular polymeric substance of P. aeruginosa biofilms is an ill-defined mix of polysaccharides, nucleic acids, and proteins. Here, we directly visualize the product of the polysaccharide synthesis locus (Psl exopolysaccharide) at different stages of biofilm development. During attachment, Psl is anchored on the cell surface in a helical pattern. This promotes cell-cell interactions and assembly of a matrix, which holds bacteria in the biofilm and on the surface. Chemical dissociation of Psl from the bacterial surface disrupted the Psl matrix as well as the biofilm structure. During biofilm maturation, Psl accumulates on the periphery of 3-D-structured microcolonies, resulting in a Psl matrix-free cavity in the microcolony center. At the dispersion stage, swimming cells appear in this matrix cavity. Dead cells and extracellular DNA (eDNA) are also concentrated in the Psl matrix-free area. Deletion of genes that control cell death and autolysis affects the formation of the matrix cavity and microcolony dispersion. These data provide a mechanism for how P. aeruginosa builds a matrix and subsequently a cavity to free a portion of cells for seeding dispersal. Direct visualization reveals that Psl is a key scaffolding matrix component and opens up avenues for therapeutics of biofilm-related complications.
几乎所有存在于组织和器官等多细胞结构中的细胞都被包裹在细胞外基质中。生物膜的一个最重要特征是作为基质发挥作用的细胞外聚合物,它将细菌细胞聚集在一起。然而,关于基质如何形成以及在生物膜发育过程中基质成分如何包裹细菌,我们所知甚少。铜绿假单胞菌形成与环境和临床相关的生物膜,是研究生物膜的典型生物体。铜绿假单胞菌生物膜的细胞外聚合物是多糖、核酸和蛋白质的一种不明确混合物。在这里,我们直接观察了生物膜发育不同阶段多糖合成位点(Psl胞外多糖)的产物。在附着阶段,Psl以螺旋模式锚定在细胞表面。这促进了细胞间相互作用和基质的组装,将细菌固定在生物膜和表面上。Psl从细菌表面的化学解离破坏了Psl基质以及生物膜结构。在生物膜成熟阶段,Psl聚集在三维结构微菌落的周边,导致微菌落中心出现一个无Psl基质的空腔。在分散阶段,游动细胞出现在这个基质空腔中。死细胞和细胞外DNA(eDNA)也集中在无Psl基质的区域。控制细胞死亡和自溶的基因缺失会影响基质空腔的形成和微菌落的分散。这些数据提供了一种机制,说明铜绿假单胞菌如何构建基质并随后形成一个空腔,以使一部分细胞游离出来用于播种扩散。直接观察表明,Psl是关键的支架基质成分,并为生物膜相关并发症的治疗开辟了途径。