Suppr超能文献

终止密码子重新分配与频繁使用可变终止移码之间的联系。

Connection between stop codon reassignment and frequent use of shifty stop frameshifting.

作者信息

Vallabhaneni Haritha, Fan-Minogue Hua, Bedwell David M, Farabaugh Philip J

机构信息

Program in Molecular and Cell Biology, Department of Biological Sciences, University of Maryland Baltimore County, Baltimore,Maryland 21250, USA.

出版信息

RNA. 2009 May;15(5):889-97. doi: 10.1261/rna.1508109. Epub 2009 Mar 27.

Abstract

Ciliated protozoa of the genus Euplotes have undergone genetic code reassignment, redefining the termination codon UGA to encode cysteine. In addition, Euplotes spp. genes very frequently employ shifty stop frameshifting. Both of these phenomena involve noncanonical events at a termination codon, suggesting they might have a common cause. We recently demonstrated that Euplotes octocarinatus peptide release factor eRF1 ignores UGA termination codons while continuing to recognize UAA and UAG. Here we show that both the Tetrahymena thermophila and E. octocarinatus eRF1 factors allow efficient frameshifting at all three termination codons, suggesting that UGA redefinition also impaired UAA/UAG recognition. Mutations of the Euplotes factor restoring a phylogenetically conserved motif in eRF1 (TASNIKS) reduced programmed frameshifting at all three termination codons. Mutation of another conserved residue, Cys124, strongly reduces frameshifting at UGA while actually increasing frameshifting at UAA/UAG. We will discuss these results in light of recent biochemical characterization of these mutations.

摘要

真核草履虫属的纤毛虫经历了遗传密码重新分配,将终止密码子UGA重新定义为编码半胱氨酸。此外,真核草履虫属的基因非常频繁地使用移位终止密码子移码。这两种现象都涉及终止密码子处的非规范事件,表明它们可能有共同的原因。我们最近证明,八肋游仆虫肽释放因子eRF1忽略UGA终止密码子,同时继续识别UAA和UAG。在这里,我们表明嗜热四膜虫和八肋游仆虫的eRF1因子都允许在所有三个终止密码子处有效移码,这表明UGA重新定义也损害了UAA/UAG的识别。真核草履虫因子的突变恢复了eRF1中一个系统发育保守基序(TASNIKS),减少了所有三个终止密码子处的程序性移码。另一个保守残基Cys124的突变强烈降低了UGA处的移码,而实际上增加了UAA/UAG处的移码。我们将根据这些突变最近的生化特征来讨论这些结果。

相似文献

1
Connection between stop codon reassignment and frequent use of shifty stop frameshifting.
RNA. 2009 May;15(5):889-97. doi: 10.1261/rna.1508109. Epub 2009 Mar 27.
2
Distinct paths to stop codon reassignment by the variant-code organisms Tetrahymena and Euplotes.
Mol Cell Biol. 2006 Jan;26(2):438-47. doi: 10.1128/MCB.26.2.438-447.2006.
5
Stop codon recognition in ciliates: Euplotes release factor does not respond to reassigned UGA codon.
EMBO Rep. 2001 Aug;2(8):680-4. doi: 10.1093/embo-reports/kve156. Epub 2001 Jul 19.
6
The ciliate Euplotes octocarinatus expresses two polypeptide release factors of the type eRF1.
Gene. 2001 Jan 10;262(1-2):161-8. doi: 10.1016/s0378-1119(00)00538-2.
7
Class I release factors in ciliates with variant genetic codes.
Nucleic Acids Res. 2001 Feb 15;29(4):921-7. doi: 10.1093/nar/29.4.921.
9
UAA and UAG may Encode Amino Acid in Cathepsin B Gene of Euplotes octocarinatus.
J Eukaryot Microbiol. 2020 Jan;67(1):144-149. doi: 10.1111/jeu.12755. Epub 2019 Sep 2.
10

引用本文的文献

1
Evolutionary origin of the frameshift sites in the ribosomal frameshifting genes of Euplotes.
BMC Genomics. 2025 Jul 19;26(1):676. doi: 10.1186/s12864-025-11870-w.
2
Eukaryotic release factor 1 from Euplotes promotes frameshifting at premature stop codons in human cells.
iScience. 2024 Mar 4;27(4):109413. doi: 10.1016/j.isci.2024.109413. eCollection 2024 Apr 19.
3
Two classes of EF1-family translational GTPases encoded by giant viruses.
Nucleic Acids Res. 2019 Jun 20;47(11):5761-5776. doi: 10.1093/nar/gkz296.
4
Position-dependent termination and widespread obligatory frameshifting in Euplotes translation.
Nat Struct Mol Biol. 2017 Jan;24(1):61-68. doi: 10.1038/nsmb.3330. Epub 2016 Nov 21.
5
Unbiased Mitoproteome Analyses Confirm Non-canonical RNA, Expanded Codon Translations.
Comput Struct Biotechnol J. 2016 Oct 5;14:391-403. doi: 10.1016/j.csbj.2016.09.004. eCollection 2016.
7
Ribosomal frameshifting and transcriptional slippage: From genetic steganography and cryptography to adventitious use.
Nucleic Acids Res. 2016 Sep 6;44(15):7007-78. doi: 10.1093/nar/gkw530. Epub 2016 Jul 19.
8
Genetic Codes with No Dedicated Stop Codon: Context-Dependent Translation Termination.
Cell. 2016 Jul 28;166(3):691-702. doi: 10.1016/j.cell.2016.06.020. Epub 2016 Jul 14.
10
Augmented genetic decoding: global, local and temporal alterations of decoding processes and codon meaning.
Nat Rev Genet. 2015 Sep;16(9):517-29. doi: 10.1038/nrg3963. Epub 2015 Aug 11.

本文引用的文献

2
Role of a tRNA base modification and its precursors in frameshifting in eukaryotes.
J Biol Chem. 2007 Sep 7;282(36):26026-34. doi: 10.1074/jbc.M703391200. Epub 2007 Jul 9.
3
Macronuclear genome sequence of the ciliate Tetrahymena thermophila, a model eukaryote.
PLoS Biol. 2006 Sep;4(9):e286. doi: 10.1371/journal.pbio.0040286.
6
Distinct paths to stop codon reassignment by the variant-code organisms Tetrahymena and Euplotes.
Mol Cell Biol. 2006 Jan;26(2):438-47. doi: 10.1128/MCB.26.2.438-447.2006.
8
Invariant amino acids essential for decoding function of polypeptide release factor eRF1.
Nucleic Acids Res. 2005 Nov 10;33(19):6418-25. doi: 10.1093/nar/gki927. Print 2005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验