Suppr超能文献

使用非线性降维方法预测革兰氏阴性细菌蛋白质的亚细胞定位。

Using the nonlinear dimensionality reduction method for the prediction of subcellular localization of Gram-negative bacterial proteins.

机构信息

Institute of Image Processing and Pattern Recognition, Shanghai Jiaotong University, Shanghai, China.

出版信息

Mol Divers. 2009 Nov;13(4):475-81. doi: 10.1007/s11030-009-9134-z. Epub 2009 Mar 28.

Abstract

One of the central problems in computational biology is protein function identification in an automated fashion. A key step to achieve this is predicting to which subcellular location the protein belongs, since protein localization correlates closely with its function. A wide variety of methods for protein subcellular localization prediction have been proposed over recent years. Linear dimensionality reduction (DR) methods have been introduced to address the high-dimensionality problem by transforming the representation of protein sequences. However, this approach is not suitable for some complex biological systems that have nonlinear characteristics. Herein, we use nonlinear DR methods such as the kernel DR method to capture the nonlinear characteristics of a high-dimensional space. Then, the K-nearest-neighbor (K-NN) classifier is employed to identify the subcellular localization of Gram-negative bacterial proteins based on their reduced low-dimensional features. Experimental results thus obtained are quite encouraging, indicating that the applied nonlinear DR method is effective to deal with this complicated problem of predicting subcellular localization of Gram-negative bacterial proteins. An online web server for predicting subcellular location of Gram-negative bacterial proteins is available at (http://202.120.37.185:8080/).

摘要

计算生物学中的一个核心问题是自动识别蛋白质的功能。实现这一目标的关键步骤是预测蛋白质属于哪个亚细胞位置,因为蛋白质定位与功能密切相关。近年来已经提出了多种用于蛋白质亚细胞定位预测的方法。线性降维 (DR) 方法已被引入,通过转换蛋白质序列的表示来解决高维问题。然而,这种方法不适用于某些具有非线性特征的复杂生物系统。在此,我们使用核 DR 方法等非线性 DR 方法来捕获高维空间的非线性特征。然后,基于其降维的低维特征,使用 K-最近邻 (K-NN) 分类器来识别革兰氏阴性细菌蛋白质的亚细胞定位。因此得到的实验结果非常令人鼓舞,表明所应用的非线性 DR 方法对于处理预测革兰氏阴性细菌蛋白质亚细胞定位这一复杂问题是有效的。一个用于预测革兰氏阴性细菌蛋白质亚细胞位置的在线网络服务器可在 (http://202.120.37.185:8080/) 上获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验