Suppr超能文献

使用氨基酸对抗原性量表预测线性B细胞表位

Prediction of linear B-cell epitopes using amino acid pair antigenicity scale.

作者信息

Chen J, Liu H, Yang J, Chou K-C

机构信息

Institute of Image Processing and Pattern Recognition, Shanghai Jiaotong University, Shanghai, China.

出版信息

Amino Acids. 2007 Sep;33(3):423-8. doi: 10.1007/s00726-006-0485-9. Epub 2007 Jan 26.

Abstract

Identification of antigenic sites on proteins is of vital importance for developing synthetic peptide vaccines, immunodiagnostic tests and antibody production. Currently, most of the prediction algorithms rely on amino acid propensity scales using a sliding window approach. These methods are oversimplified and yield poor predicted results in practice. In this paper, a novel scale, called the amino acid pair (AAP) antigenicity scale, is proposed that is based on the finding that B-cell epitopes favor particular AAPs. It is demonstrated that, using SVM (support vector machine) classifier, the AAP antigenicity scale approach has much better performance than the existing scales based on the single amino acid propensity. The AAP antigenicity scale can reflect some special sequence-coupled feature in the B-cell epitopes, which is the essence why the new approach is superior to the existing ones. It is anticipated that with the continuous increase of the known epitope data, the power of the AAP antigenicity scale approach will be further enhanced.

摘要

识别蛋白质上的抗原位点对于开发合成肽疫苗、免疫诊断测试和抗体生产至关重要。目前,大多数预测算法依赖于使用滑动窗口方法的氨基酸倾向量表。这些方法过于简单,在实践中产生的预测结果较差。本文提出了一种新的量表,称为氨基酸对(AAP)抗原性量表,它基于B细胞表位偏爱特定氨基酸对这一发现。结果表明,使用支持向量机(SVM)分类器,AAP抗原性量表方法比基于单个氨基酸倾向的现有量表具有更好的性能。AAP抗原性量表可以反映B细胞表位中的一些特殊序列偶联特征,这就是新方法优于现有方法的本质原因。预计随着已知表位数据的不断增加,AAP抗原性量表方法的效力将进一步增强。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验