Hwang Tzyh-Chang, Sheppard David N
Department of Medical Pharmacology and Physiology, and Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO 65211, USA.
J Physiol. 2009 May 15;587(Pt 10):2151-61. doi: 10.1113/jphysiol.2009.171595. Epub 2009 Mar 30.
The cystic fibrosis transmembrane conductance regulator (CFTR) plays a fundamental role in fluid and electrolyte transport across epithelial tissues. Based on its structure, function and regulation, CFTR is an ATP-binding cassette (ABC) transporter. These transporters are assembled from two membrane-spanning domains (MSDs) and two nucleotide-binding domains (NBDs). In the vast majority of ABC transporters, the NBDs form a common engine that utilises the energy of ATP hydrolysis to pump a wide spectrum of substrates through diverse transmembrane pathways formed by the MSDs. By contrast, in CFTR the MSDs form a pathway for passive anion flow that is gated by cycles of ATP binding and hydrolysis by the NBDs. Here, we consider how the interaction of ATP with two ATP-binding sites, formed by the NBDs, powers conformational changes in CFTR structure to gate the channel pore. We explore how conserved sequences from both NBDs form ATP-binding sites at the interface of an NBD dimer and highlight the distinct roles that each binding site plays during the gating cycle. Knowledge of how ATP gates the CFTR Cl- channel is critical for understanding CFTR's physiological role, its malfunction in disease and the mechanism of action of small molecules that modulate CFTR channel gating.
囊性纤维化跨膜传导调节因子(CFTR)在跨上皮组织的液体和电解质转运中起着重要作用。基于其结构、功能和调节机制,CFTR属于ATP结合盒(ABC)转运蛋白家族。这些转运蛋白由两个跨膜结构域(MSDs)和两个核苷酸结合结构域(NBDs)组装而成。在绝大多数ABC转运蛋白中,NBDs构成一个通用的引擎,利用ATP水解产生的能量,通过MSDs形成的不同跨膜途径泵出多种底物。相比之下,在CFTR中,MSDs形成了一个被动阴离子流动的通道,该通道由NBDs的ATP结合和水解循环控制。在此,我们探讨ATP与由NBDs形成的两个ATP结合位点之间的相互作用如何驱动CFTR结构的构象变化,从而控制通道孔的开闭。我们研究了来自两个NBDs的保守序列如何在NBD二聚体的界面处形成ATP结合位点,并强调了每个结合位点在门控循环中所起的独特作用。了解ATP如何控制CFTR氯离子通道对于理解CFTR的生理作用、其在疾病中的功能异常以及调节CFTR通道门控的小分子作用机制至关重要。