Department of Medical Pharmacology and Physiology and 2 Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA.
J Gen Physiol. 2010 May;135(5):399-414. doi: 10.1085/jgp.201010399.
Cystic fibrosis transmembrane conductance regulator (CFTR), a member of the adenosine triphosphate (ATP) binding cassette (ABC) superfamily, is an ATP-gated chloride channel. Like other ABC proteins, CFTR encompasses two nucleotide binding domains (NBDs), NBD1 and NBD2, each accommodating an ATP binding site. It is generally accepted that CFTR's opening-closing cycles, each completed within 1 s, are driven by rapid ATP binding and hydrolysis events in NBD2. Here, by recording CFTR currents in real time with a ligand exchange protocol, we demonstrated that during many of these gating cycles, NBD1 is constantly occupied by a stably bound ATP or 8-N(3)-ATP molecule for tens of seconds. We provided evidence that this tightly bound ATP or 8-N(3)-ATP also interacts with residues in the signature sequence of NBD2, a telltale sign for an event occurring at the NBD1-NBD2 interface. The open state of CFTR has been shown to represent a two-ATP-bound NBD dimer. Our results indicate that upon ATP hydrolysis in NBD2, the channel closes into a "partial NBD dimer" state where the NBD interface remains partially closed, preventing ATP dissociation from NBD1 but allowing the release of hydrolytic products and binding of the next ATP to occur in NBD2. Opening and closing of CFTR can then be coupled to the formation and "partial" separation of the NBD dimer. The tightly bound ATP molecule in NBD1 can occasionally dissociate from the partial dimer state, resulting in a nucleotide-free monomeric state of NBDs. Our data, together with other structural/functional studies of CFTR's NBDs, suggest that this process is poorly reversible, implying that the channel in the partial dimer state or monomeric state enters the open state through different pathways. We therefore proposed a gating model for CFTR with two distinct cycles. The structural and functional significance of our results to other ABC proteins is discussed.
囊性纤维化跨膜电导调节因子(CFTR),是三磷酸腺苷(ATP)结合盒(ABC)超家族的成员,是一种 ATP 门控氯离子通道。与其他 ABC 蛋白一样,CFTR 包含两个核苷酸结合域(NBD),NBD1 和 NBD2,每个都容纳一个 ATP 结合位点。人们普遍认为,CFTR 的开启-关闭循环,每个循环在 1 秒内完成,是由 NBD2 中快速的 ATP 结合和水解事件驱动的。在这里,我们通过使用配体交换协议实时记录 CFTR 电流,证明在这些门控循环中的许多循环中,NBD1 持续被稳定结合的 ATP 或 8-N(3)-ATP 分子占据数十秒。我们提供的证据表明,这种紧密结合的 ATP 或 8-N(3)-ATP 也与 NBD2 中特征序列的残基相互作用,这是发生在 NBD1-NBD2 界面上的事件的明显标志。CFTR 的开放状态已被证明代表二 ATP 结合的 NBD 二聚体。我们的结果表明,在 NBD2 中 ATP 水解后,通道关闭到“部分 NBD 二聚体”状态,其中 NBD 界面仍部分关闭,阻止 ATP 从 NBD1 解离,但允许水解产物释放并在 NBD2 中结合下一个 ATP。CFTR 的开启和关闭然后可以与 NBD 二聚体的形成和“部分”分离耦合。NBD1 中的紧密结合的 ATP 分子偶尔会从部分二聚体状态解离,导致 NBD 单体的无核苷酸状态。我们的数据,连同 CFTR 的 NBD 的其他结构/功能研究,表明这个过程是不可逆转的,这意味着在部分二聚体状态或单体状态下的通道通过不同的途径进入开放状态。因此,我们提出了一个具有两个不同循环的 CFTR 门控模型。我们的结果对其他 ABC 蛋白的结构和功能意义进行了讨论。