Suppr超能文献

Inhibition of lateral vestibular nucleus neurons by 5-hydroxytryptamine derived from the dorsal raphe nucleus.

作者信息

Kishimoto T, Sasa M, Takaori S

机构信息

Department of Pharmacology, Faculty of Medicine, Kyoto University, Japan.

出版信息

Brain Res. 1991 Jul 12;553(2):229-37. doi: 10.1016/0006-8993(91)90830-o.

Abstract

Electrophysiological studies were performed to elucidate the effect of 5-hydroxytryptamine (5-HT) originating in the dorsal raphe nucleus (DR) on neuronal activity in the lateral vestibular nucleus (LVN) neurons, using cats anesthetized with alpha-chloralose. LVN neurons were classified into monosynaptic and polysynaptic neurons according to their responses to vestibular nerve stimulation. Conditioning stimuli applied to the DR inhibited orthodromic spikes elicited by vestibular nerve stimulation predominantly in polysynaptic neurons of the LVN. The iontophoretic application of 5-HT also inhibited orthodromic spikes of the LVN neurons. A close correlation was observed between the effects of DR conditioning stimulation and iontophoretically applied 5-HT in the same neurons. These inhibitions with both treatments were antagonized during the application of methysergide, a 5-HT antagonist. In the majority of LVN polysynaptic neurons that responded to antidromic stimulation of the ipsilateral or contralateral abducens nucleus, orthodromic spikes elicited by vestibular nerve stimulation were inhibited by DR conditioning stimulation and the iontophoretic application of 5-HT. In contrast, LVN neurons that responded to antidromic stimulation of the vestibulospinal tract were rarely affected by these treatments. These results indicate that 5-HT derived from the DR inhibits the synaptic transmission of LVN polysynaptic neurons ascending to the abducens nucleus, and suggest that 5-HT derived from the DR is involved in the regulation of the vestibulo-ocular reflex.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验