Cialla Dana, Siebert Ronald, Hübner Uwe, Möller Robert, Schneidewind Henrik, Mattheis Roland, Petschulat Jörg, Tünnermann Andreas, Pertsch Thomas, Dietzek Benjamin, Popp Jürgen
Institute of Physical Chemistry, Friedrich Schiller University Jena (Jenaer Biochip Initiative), Helmholtzweg 4, 07743, Jena, Germany.
Anal Bioanal Chem. 2009 Aug;394(7):1811-8. doi: 10.1007/s00216-009-2749-1. Epub 2009 Mar 31.
Surface-enhanced Raman scattering (SERS) is a potent tool in bioanalytical science because the technique combines high sensitivity with molecular specificity. However, the widespread and routine use of SERS in quantitative biomedical diagnostics is limited by tight requirements on the reproducibility of the noble metal substrates used. To solve this problem, we recently introduced a novel approach to reproducible SERS substrates. In this contribution, we apply ultrafast time-resolved spectroscopy to investigate the photo-induced collective charge-carrier dynamics in such substrates, which represents the fundamental origin of the SERS mechanism. The ultrafast experiments are accompanied by scanning-near field optical microscopy and SERS experiments to correlate the appearance of plasmon dynamics with the resultant evanescent field distribution and the analytically relevant SERS enhancement.
表面增强拉曼散射(SERS)是生物分析科学中的一种强大工具,因为该技术将高灵敏度与分子特异性相结合。然而,SERS在定量生物医学诊断中的广泛常规应用受到对所用贵金属基底再现性的严格要求的限制。为了解决这个问题,我们最近引入了一种制备可再现SERS基底的新方法。在本论文中,我们应用超快时间分辨光谱来研究此类基底中的光致集体电荷载流子动力学,这是SERS机制的基本起源。超快实验辅以扫描近场光学显微镜和SERS实验,以关联等离子体动力学的出现与由此产生的倏逝场分布以及分析相关的SERS增强。