Suppr超能文献

聚合物模型在蛋白质荧光共振能量转移实验分析中的准确性如何?

How accurate are polymer models in the analysis of Förster resonance energy transfer experiments on proteins?

作者信息

O'Brien Edward P, Morrison Greg, Brooks Bernard R, Thirumalai D

机构信息

Biophysics Program, University of Maryland, College Park, Maryland 20742, USA.

出版信息

J Chem Phys. 2009 Mar 28;130(12):124903. doi: 10.1063/1.3082151.

Abstract

Single molecule Förster resonance energy transfer (FRET) experiments are used to infer the properties of the denatured state ensemble (DSE) of proteins. From the measured average FRET efficiency, , the distance distribution P(R) is inferred by assuming that the DSE can be described as a polymer. The single parameter in the appropriate polymer model (Gaussian chain, wormlike chain, or self-avoiding walk) for P(R) is determined by equating the calculated and measured . In order to assess the accuracy of this "standard procedure," we consider the generalized Rouse model (GRM), whose properties [ and P(R)] can be analytically computed, and the Molecular Transfer Model for protein L for which accurate simulations can be carried out as a function of guanadinium hydrochloride (GdmCl) concentration. Using the precisely computed for the GRM and protein L, we infer P(R) using the standard procedure. We find that the mean end-to-end distance can be accurately inferred (less than 10% relative error) using and polymer models for P(R). However, the value extracted for the radius of gyration (R(g)) and the persistence length (l(p)) are less accurate. For protein L, the errors in the inferred properties increase as the GdmCl concentration increases for all polymer models. The relative error in the inferred R(g) and l(p), with respect to the exact values, can be as large as 25% at the highest GdmCl concentration. We propose a self-consistency test, requiring measurements of by attaching dyes to different residues in the protein, to assess the validity of describing DSE using the Gaussian model. Application of the self-consistency test to the GRM shows that even for this simple model, which exhibits an order-->disorder transition, the Gaussian P(R) is inadequate. Analysis of experimental data of FRET efficiencies with dyes at several locations for the cold shock protein, and simulations results for protein L, for which accurate FRET efficiencies between various locations were computed, shows that at high GdmCl concentrations there are significant deviations in the DSE P(R) from the Gaussian model.

摘要

单分子福斯特共振能量转移(FRET)实验用于推断蛋白质变性态系综(DSE)的性质。根据测得的平均FRET效率,通过假设DSE可描述为聚合物来推断距离分布P(R)。通过使计算得到的与测量得到的相等,确定P(R)合适聚合物模型(高斯链、蠕虫状链或自回避行走)中的单个参数。为了评估这种“标准程序”的准确性,我们考虑广义劳斯模型(GRM),其性质[和P(R)]可以通过解析计算得到,以及蛋白质L的分子转移模型,对于该模型可以作为盐酸胍(GdmCl)浓度的函数进行精确模拟。使用GRM和蛋白质L精确计算得到的,我们采用标准程序推断P(R)。我们发现,使用和P(R)的聚合物模型可以准确推断平均端到端距离(相对误差小于10%)。然而,回转半径(R(g))和持久长度(l(p))提取的值不太准确。对于蛋白质L,所有聚合物模型推断性质的误差都随着GdmCl浓度的增加而增加。在最高GdmCl浓度下,推断的R(g)和l(p)相对于精确值的相对误差可能高达25%。我们提出一种自洽性测试,要求通过将染料连接到蛋白质的不同残基上来测量,以评估使用高斯模型描述DSE的有效性。将自洽性测试应用于GRM表明,即使对于这个表现出有序到无序转变的简单模型,高斯P(R)也是不充分的。对冷休克蛋白在几个位置带有染料的FRET效率实验数据以及蛋白质L的模拟结果进行分析,对于蛋白质L计算了不同位置之间精确的FRET效率,结果表明在高GdmCl浓度下,DSE P(R)与高斯模型存在显著偏差。

相似文献

引用本文的文献

2
Sequence-dependent conformational preferences of disordered single-stranded RNA.无序单链RNA的序列依赖性构象偏好
Cell Rep Phys Sci. 2024 Nov 20;5(11). doi: 10.1016/j.xcrp.2024.102264. Epub 2024 Oct 29.
3
Nanosecond chain dynamics of single-stranded nucleic acids.单链核酸的纳秒级链动力学
Nat Commun. 2024 Jul 17;15(1):6010. doi: 10.1038/s41467-024-50092-8.
9
Structural Preferences Shape the Entropic Force of Disordered Protein Ensembles.结构偏好塑造无序蛋白质集合的熵力。
J Phys Chem B. 2023 May 18;127(19):4235-4244. doi: 10.1021/acs.jpcb.3c00698. Epub 2023 May 8.

本文引用的文献

3
Protein folding studied by single-molecule FRET.通过单分子荧光共振能量转移研究蛋白质折叠。
Curr Opin Struct Biol. 2008 Feb;18(1):16-26. doi: 10.1016/j.sbi.2007.12.003. Epub 2008 Jan 24.
8
Coil-globule transition in the denatured state of a small protein.一种小蛋白质变性状态下的卷曲-球状转变
Proc Natl Acad Sci U S A. 2006 Aug 1;103(31):11539-43. doi: 10.1073/pnas.0601395103. Epub 2006 Jul 20.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验