Rothkegel Alexander, Lehnertz Klaus
Department of Epileptology, University of Bonn, Bonn, Germany.
Chaos. 2009 Mar;19(1):015109. doi: 10.1063/1.3087432.
We investigate numerically the collective dynamical behavior of pulse-coupled nonleaky integrate-and-fire neurons that are arranged on a two-dimensional small-world network. To ensure ongoing activity, we impose a probability for spontaneous firing for each neuron. We study network dynamics evolving from different sets of initial conditions in dependence on coupling strength and rewiring probability. Besides a homogeneous equilibrium state for low coupling strength, we observe different local patterns including cyclic waves, spiral waves, and turbulentlike patterns, which-depending on network parameters-interfere with the global collective firing of the neurons. We attribute the various network dynamics to distinct regimes in the parameter space. For the same network parameters different network dynamics can be observed depending on the set of initial conditions only. Such a multistable behavior and the interplay between local pattern formation and global collective firing may be attributable to the spatiotemporal dynamics of biological networks.
我们对排列在二维小世界网络上的脉冲耦合非泄漏积分发放神经元的集体动力学行为进行了数值研究。为确保持续活动,我们为每个神经元设定了自发放电的概率。我们研究了依赖于耦合强度和重新布线概率从不同初始条件集演化而来的网络动力学。除了低耦合强度下的均匀平衡状态,我们还观察到了不同的局部模式,包括循环波、螺旋波和类湍流模式,这些模式根据网络参数会干扰神经元的全局集体放电。我们将各种网络动力学归因于参数空间中的不同区域。对于相同的网络参数,仅根据初始条件集就能观察到不同的网络动力学。这种多稳态行为以及局部模式形成与全局集体放电之间的相互作用可能归因于生物网络的时空动力学。