Suppr超能文献

空间受限复杂脑网络上的传播动力学。

Spreading dynamics on spatially constrained complex brain networks.

机构信息

School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK.

出版信息

J R Soc Interface. 2013 Feb 13;10(81):20130016. doi: 10.1098/rsif.2013.0016. Print 2013 Apr 6.

Abstract

The study of dynamical systems defined on complex networks provides a natural framework with which to investigate myriad features of neural dynamics and has been widely undertaken. Typically, however, networks employed in theoretical studies bear little relation to the spatial embedding or connectivity of the neural networks that they attempt to replicate. Here, we employ detailed neuroimaging data to define a network whose spatial embedding represents accurately the folded structure of the cortical surface of a rat brain and investigate the propagation of activity over this network under simple spreading and connectivity rules. By comparison with standard network models with the same coarse statistics, we show that the cortical geometry influences profoundly the speed of propagation of activation through the network. Our conclusions are of high relevance to the theoretical modelling of epileptic seizure events and indicate that such studies which omit physiological network structure risk simplifying the dynamics in a potentially significant way.

摘要

研究定义在复杂网络上的动力系统为研究神经动力学的诸多特征提供了一个自然的框架,并得到了广泛的应用。然而,通常情况下,理论研究中使用的网络与他们试图复制的神经网络的空间嵌入或连接性几乎没有关系。在这里,我们利用详细的神经影像学数据来定义一个网络,其空间嵌入准确地表示了大鼠大脑皮质表面的折叠结构,并根据简单的扩展和连接规则研究了活动在该网络上的传播。通过与具有相同粗粒度统计数据的标准网络模型进行比较,我们表明皮质几何结构极大地影响了激活在网络中的传播速度。我们的结论与癫痫发作事件的理论建模高度相关,并表明那些忽略生理网络结构的研究可能会以一种潜在重要的方式简化动力学。

相似文献

1
Spreading dynamics on spatially constrained complex brain networks.
J R Soc Interface. 2013 Feb 13;10(81):20130016. doi: 10.1098/rsif.2013.0016. Print 2013 Apr 6.
4
Synchronization dependent on spatial structures of a mesoscopic whole-brain network.
PLoS Comput Biol. 2019 Apr 23;15(4):e1006978. doi: 10.1371/journal.pcbi.1006978. eCollection 2019 Apr.
5
Spatial Embedding Imposes Constraints on Neuronal Network Architectures.
Trends Cogn Sci. 2018 Dec;22(12):1127-1142. doi: 10.1016/j.tics.2018.09.007. Epub 2018 Oct 26.
6
Physiology of functional and effective networks in epilepsy.
Clin Neurophysiol. 2015 Feb;126(2):227-36. doi: 10.1016/j.clinph.2014.09.009. Epub 2014 Sep 22.
7
Estimation of Directed Effective Connectivity from fMRI Functional Connectivity Hints at Asymmetries of Cortical Connectome.
PLoS Comput Biol. 2016 Mar 16;12(3):e1004762. doi: 10.1371/journal.pcbi.1004762. eCollection 2016 Mar.
8
Analytical description of the evolution of neural networks: learning rules and complexity.
Biol Cybern. 1999 Aug;81(2):169-75. doi: 10.1007/s004220050553.
10
Inferring collective dynamical states from widely unobserved systems.
Nat Commun. 2018 Jun 13;9(1):2325. doi: 10.1038/s41467-018-04725-4.

引用本文的文献

1
Treatment Tone Spacing and Acute Effects of Acoustic Coordinated Reset Stimulation in Tinnitus Patients.
Front Netw Physiol. 2021 Oct 6;1:734344. doi: 10.3389/fnetp.2021.734344. eCollection 2021.
2
Prion-like spreading of Alzheimer's disease within the brain's connectome.
J R Soc Interface. 2019 Oct 31;16(159):20190356. doi: 10.1098/rsif.2019.0356. Epub 2019 Oct 16.
3
Efficient message passing for cascade size distributions.
Sci Rep. 2019 Apr 25;9(1):6561. doi: 10.1038/s41598-019-42873-9.
4
Commute Time as a Method to Explore Brain Functional Connectomes.
Brain Connect. 2019 Mar;9(2):155-161. doi: 10.1089/brain.2018.0598. Epub 2018 Dec 26.
5
A numerical simulation of neural fields on curved geometries.
J Comput Neurosci. 2018 Oct;45(2):133-145. doi: 10.1007/s10827-018-0697-5. Epub 2018 Oct 11.
6
Optimized connectome architecture for sensory-motor integration.
Netw Neurosci. 2017 Dec 1;1(4):415-430. doi: 10.1162/NETN_a_00022. eCollection 2018 Winter.
7
Network-Based Asymmetry of the Human Auditory System.
Cereb Cortex. 2018 Jul 1;28(7):2655-2664. doi: 10.1093/cercor/bhy101.
8
Efficient communication dynamics on macro-connectome, and the propagation speed.
Sci Rep. 2018 Feb 6;8(1):2510. doi: 10.1038/s41598-018-20591-y.
9
Communication dynamics in complex brain networks.
Nat Rev Neurosci. 2017 Dec 14;19(1):17-33. doi: 10.1038/nrn.2017.149.

本文引用的文献

1
Towards a large-scale model of patient-specific epileptic spike-wave discharges.
Biol Cybern. 2013 Feb;107(1):83-94. doi: 10.1007/s00422-012-0534-2. Epub 2012 Nov 7.
2
Modelling the role of tissue heterogeneity in epileptic rhythms.
Eur J Neurosci. 2012 Jul;36(2):2178-87. doi: 10.1111/j.1460-9568.2012.08093.x.
3
Cortical cartography and Caret software.
Neuroimage. 2012 Aug 15;62(2):757-64. doi: 10.1016/j.neuroimage.2011.10.077. Epub 2011 Oct 28.
4
Self-organised transients in a neural mass model of epileptogenic tissue dynamics.
Neuroimage. 2012 Feb 1;59(3):2644-60. doi: 10.1016/j.neuroimage.2011.08.060. Epub 2011 Sep 5.
5
Synchrony and asynchrony for neuronal dynamics defined on complex networks.
Bull Math Biol. 2012 Apr;74(4):769-802. doi: 10.1007/s11538-011-9674-0. Epub 2011 Jul 14.
6
A tutorial in connectome analysis: topological and spatial features of brain networks.
Neuroimage. 2011 Aug 1;57(3):892-907. doi: 10.1016/j.neuroimage.2011.05.025. Epub 2011 May 14.
7
Microseizures and the spatiotemporal scales of human partial epilepsy.
Brain. 2010 Sep;133(9):2789-97. doi: 10.1093/brain/awq190. Epub 2010 Aug 4.
8
Coalescence and fragmentation of cortical networks during focal seizures.
J Neurosci. 2010 Jul 28;30(30):10076-85. doi: 10.1523/JNEUROSCI.6309-09.2010.
9
Optimal hierarchical modular topologies for producing limited sustained activation of neural networks.
Front Neuroinform. 2010 May 14;4:8. doi: 10.3389/fninf.2010.00008. eCollection 2010.
10
Cortical hubs form a module for multisensory integration on top of the hierarchy of cortical networks.
Front Neuroinform. 2010 Mar 19;4:1. doi: 10.3389/neuro.11.001.2010. eCollection 2010.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验