Suppr超能文献

预测人类乳腺癌转移能力的拷贝数改变。

Copy number alterations that predict metastatic capability of human breast cancer.

作者信息

Zhang Yi, Martens John W M, Yu Jack X, Jiang John, Sieuwerts Anieta M, Smid Marcel, Klijn Jan G M, Wang Yixin, Foekens John A

机构信息

Veridex LLC, a Johnson & Johnson Company, San Diego, California, USA.

出版信息

Cancer Res. 2009 May 1;69(9):3795-801. doi: 10.1158/0008-5472.CAN-08-4596. Epub 2009 Mar 31.

Abstract

We have analyzed the DNA copy numbers for over 100,000 single-nucleotide polymorphism loci across the human genome in genomic DNA from 313 lymph node-negative primary breast tumors for which genome-wide gene expression data were also available. Combining these two data sets allowed us to identify the genomic loci and their mapped genes, having high correlation with distant metastasis. An estimation of the likely response based on published predictive signatures was performed in the identified prognostic subgroups defined by gene expression and DNA copy number data. In the training set of 200 patients, we constructed an 81-gene prognostic copy number signature (CNS) that identified a subgroup of patients with increased probability of distant metastasis in the independent validation set of 113 patients [hazard ratio (HR), 2.8; 95% confidence interval (95% CI), 1.4-5.6] and in an external data set of 116 patients (HR, 3.7; 95% CI, 1.3-10.6). These high-risk patients constituted a subset of the high-risk patients predicted by our previously established 76-gene gene expression signature (GES). This very poor prognostic group identified by CNS and GES was putatively more resistant to preoperative paclitaxel and 5-fluorouracil-doxorubicin-cyclophosphamide combination chemotherapy (P = 0.0048), particularly against the doxorubicin compound, while potentially benefiting from etoposide. Our study shows the feasibility of using copy number alterations to predict patient prognostic outcome. When combined with gene expression-based signatures for prognosis, the CNS refines risk classification and can help identify those breast cancer patients who have a significantly worse outlook in prognosis and a potential differential response to chemotherapeutic drugs.

摘要

我们对来自313例淋巴结阴性原发性乳腺癌的基因组DNA中的超过10万个单核苷酸多态性位点的DNA拷贝数进行了分析,这些样本同时也有全基因组基因表达数据。将这两个数据集结合起来,使我们能够识别出与远处转移高度相关的基因组位点及其定位基因。在由基因表达和DNA拷贝数数据定义的已识别的预后亚组中,基于已发表的预测特征对可能的反应进行了估计。在200例患者的训练集中,我们构建了一个81基因的预后拷贝数特征(CNS),该特征在113例患者的独立验证集中识别出一组远处转移概率增加的患者[风险比(HR),2.8;95%置信区间(95%CI),1.4 - 5.6],在116例患者的外部数据集中也得到了类似结果(HR,3.7;95%CI,1.3 - 10.6)。这些高危患者构成了我们先前建立的76基因基因表达特征(GES)预测的高危患者子集。由CNS和GES识别出的这个预后极差的组对术前紫杉醇和5 - 氟尿嘧啶 - 阿霉素 - 环磷酰胺联合化疗的耐药性更强(P = 0.0048),尤其是对阿霉素化合物,而可能从依托泊苷中获益。我们的研究表明利用拷贝数改变预测患者预后结果的可行性。当与基于基因表达的预后特征相结合时,CNS可优化风险分类,并有助于识别那些预后明显较差且对化疗药物可能有不同反应的乳腺癌患者。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验