Lee Jun-Ho, Choi Sun-Hye, Lee Byung-Hwan, Shin Tae-Joon, Pyo Mi Kyung, Hwang Sung-Hee, Kim Bo-Ra, Lee Sang-Mok, Bae Dong-Ho, Rhim Hyewhon, Nah Seung-Yeol
Department of Physiology, College of Oriental Medicine, Kyung-Hee University, Korea.
Biol Pharm Bull. 2009 Apr;32(4):614-8. doi: 10.1248/bpb.32.614.
Kv1.4 channel belongs to the family of voltage-gated potassium channels that mediate transient and rapidly inactivating A-type currents and N-type inactivation. This N-type inactivation can be removed by the deletion of N-terminal domains, which exhibit non-inactivating currents and C-type inactivation. In our previous report, we demonstrated that 20(S)-ginsenoside Rg(3) (Rg(3)), one of the active ingredients of ginseng saponins, inhibits human Kv1.4 (hKv1.4) channel currents through the interaction with amino acids, including Lys (K) residue, which is known as K(+) activation and the extracellular tetraethylammonium (TEA) binding site. In the present study, we examined the effects of Rg(3) on hKv1.4 channel currents without the N-terminal rapid inactivation domain. We constructed hKv1.4Delta2-61 channels by N-terminal deletion of 2-61 amino acid residues. We investigated the effect of Rg(3) on hKv1.4Delta2-61 channel currents. We found that Rg(3) preferentially inhibited non-inactivating outward currents rather than peak outward currents of hKv1.4Delta2-61 channels. The mutation of K531 hKv1.4Delta2-61 to K531Y hKv1.4Delta2-61 and raising of extracellular K(+) abolished Rg(3) inhibitions on non-inactivating outward currents. Rg(3) treatment increased the C-type inactivation rate, but raising the extracellular K(+) reversed Rg(3) action. These results provide additional evidence that K531 residue also plays an important role in the Rg(3)-mediated non-inactivating current blockages and in Rg(3)-mediated increase of the C-type inactivation rate in hKv1.4Delta2-61 channels.
Kv1.4通道属于电压门控钾通道家族,介导瞬时且快速失活的A型电流和N型失活。这种N型失活可通过缺失N端结构域来消除,缺失后会表现出非失活电流和C型失活。在我们之前的报告中,我们证明人参皂苷的活性成分之一20(S)-人参皂苷Rg(3)(Rg(3))通过与包括赖氨酸(K)残基在内的氨基酸相互作用来抑制人Kv1.4(hKv1.4)通道电流,该残基被认为是钾离子(K⁺)激活位点和细胞外四乙铵(TEA)结合位点。在本研究中,我们研究了Rg(3)对没有N端快速失活结构域的hKv1.4通道电流的影响。我们通过N端缺失2至61个氨基酸残基构建了hKv1.4Delta2 - 61通道。我们研究了Rg(3)对hKv1.4Delta2 - 61通道电流的影响。我们发现Rg(3)优先抑制hKv1.4Delta2 - 61通道的非失活外向电流而非峰值外向电流。将hKv1.4Delta2 - 61的K531突变为K531Y以及提高细胞外钾离子浓度(K⁺)可消除Rg(3)对非失活外向电流的抑制作用。Rg(3)处理增加了C型失活速率,但提高细胞外K⁺可逆转Rg(3)的作用。这些结果提供了额外的证据,表明K531残基在Rg(3)介导的hKv1.4Delta2 - 61通道非失活电流阻断以及Rg(3)介导的C型失活速率增加中也起着重要作用。