Suppr超能文献

大阴离子通道:一种通过身份不明的分子实体发挥新作用的经典通道。

The maxi-anion channel: a classical channel playing novel roles through an unidentified molecular entity.

作者信息

Sabirov Ravshan Z, Okada Yasunobu

机构信息

Department of Cell Physiology, National Institute for Physiological Sciences, Okazaki, 444-8585, Japan.

出版信息

J Physiol Sci. 2009 Jan;59(1):3-21. doi: 10.1007/s12576-008-0008-4. Epub 2008 Dec 9.

Abstract

The maxi-anion channel is widely expressed and found in almost every part of the body. The channel is activated in response to osmotic cell swelling, to excision of the membrane patch, and also to some other physiologically and pathophysiologically relevant stimuli, such as salt stress in kidney macula densa as well as ischemia/hypoxia in heart and brain. Biophysically, the maxi-anion channel is characterized by a large single-channel conductance of 300-400 pS, which saturates at 580-640 pS with increasing the Cl(-) concentration. The channel discriminates well between Na(+) and Cl(-), but is poorly selective to other halides exhibiting weak electric-field selectivity with an Eisenman's selectivity sequence I. The maxi-anion channel has a wide pore with an effective radius of approximately 1.3 nm and permits passage not only of Cl(-) but also of some intracellular large organic anions, thereby releasing major extracellular signals and gliotransmitters such as glutamate(-) and ATP(4-). The channel-mediated efflux of these signaling molecules is associated with kidney tubuloglomerular feedback, cardiac ischemia/hypoxia, as well as brain ischemia/hypoxia and excitotoxic neurodegeneration. Despite the ubiquitous expression, well-defined properties and physiological/pathophysiological significance of this classical channel, the molecular entity has not been identified. Molecular identification of the maxi-anion channel is an urgent task that would greatly promote investigation in the fields not only of anion channel but also of physiological/pathophysiological signaling in the brain, heart and kidney.

摘要

大阴离子通道广泛表达,几乎存在于身体的各个部位。该通道可因细胞渗透性肿胀、膜片钳切除以及其他一些生理和病理生理相关刺激而被激活,如肾致密斑处的盐应激以及心脏和大脑的缺血/缺氧。在生物物理学方面,大阴离子通道的特征是单通道电导较大,为300 - 400 pS,随着Cl(-)浓度增加,电导在580 - 640 pS时达到饱和。该通道对Na(+)和Cl(-)有良好的区分能力,但对其他卤化物的选择性较差,呈现出艾森曼选择性序列I的弱电场选择性。大阴离子通道具有约1.3 nm有效半径的宽孔,不仅允许Cl(-)通过,还允许一些细胞内的大有机阴离子通过,从而释放主要的细胞外信号和神经递质,如谷氨酸(-)和ATP(4-)。这些信号分子通过通道介导的外流与肾小管球反馈、心脏缺血/缺氧以及脑缺血/缺氧和兴奋性毒性神经退行性变有关。尽管这个经典通道具有广泛的表达、明确的特性以及生理/病理生理意义,但其分子实体尚未被鉴定。大阴离子通道的分子鉴定是一项紧迫任务,这将极大地推动不仅在阴离子通道领域,而且在大脑、心脏和肾脏的生理/病理生理信号传导领域的研究。

相似文献

1
The maxi-anion channel: a classical channel playing novel roles through an unidentified molecular entity.
J Physiol Sci. 2009 Jan;59(1):3-21. doi: 10.1007/s12576-008-0008-4. Epub 2008 Dec 9.
2
Molecular Identities and ATP Release Activities of Two Types of Volume-Regulatory Anion Channels, VSOR and Maxi-Cl.
Curr Top Membr. 2018;81:125-176. doi: 10.1016/bs.ctm.2018.07.004. Epub 2018 Aug 17.
3
ATP-conducting maxi-anion channel: a new player in stress-sensory transduction.
Jpn J Physiol. 2004 Feb;54(1):7-14. doi: 10.2170/jjphysiol.54.7.
4
The properties, functions, and pathophysiology of maxi-anion channels.
Pflugers Arch. 2016 Mar;468(3):405-20. doi: 10.1007/s00424-015-1774-5. Epub 2016 Jan 6.
5
Maxi-anion channel and pannexin 1 hemichannel constitute separate pathways for swelling-induced ATP release in murine L929 fibrosarcoma cells.
Am J Physiol Cell Physiol. 2012 Nov 1;303(9):C924-35. doi: 10.1152/ajpcell.00459.2011. Epub 2012 Jul 11.
6
Plasmalemmal VDAC controversies and maxi-anion channel puzzle.
Biochim Biophys Acta. 2012 Jun;1818(6):1570-80. doi: 10.1016/j.bbamem.2011.09.024. Epub 2011 Oct 1.
8
The organic anion transporter SLCO2A1 constitutes the core component of the Maxi-Cl channel.
EMBO J. 2017 Nov 15;36(22):3309-3324. doi: 10.15252/embj.201796685. Epub 2017 Oct 18.
9
Maxi-channels recorded in situ from ICC and pericytes associated with the mouse myenteric plexus.
Am J Physiol Cell Physiol. 2012 Apr 1;302(7):C1055-69. doi: 10.1152/ajpcell.00334.2011. Epub 2011 Dec 7.

引用本文的文献

1
To Be or Not to Be an Ion Channel: Cryo-EM Structures Have a Say.
Cells. 2023 Jul 17;12(14):1870. doi: 10.3390/cells12141870.
2
Pharmacological modulation of chloride channels as a therapeutic strategy for neurological disorders.
Front Physiol. 2023 Mar 2;14:1122444. doi: 10.3389/fphys.2023.1122444. eCollection 2023.
3
TTYH family members form tetrameric complexes at the cell membrane.
Commun Biol. 2022 Aug 30;5(1):886. doi: 10.1038/s42003-022-03862-3.
4
Physiologic roles of P2 receptors in leukocytes.
J Leukoc Biol. 2022 Nov;112(5):983-1012. doi: 10.1002/JLB.2RU0421-226RR. Epub 2022 Jul 15.
5
Properties, Structures, and Physiological Roles of Three Types of Anion Channels Molecularly Identified in the 2010's.
Front Physiol. 2021 Dec 23;12:805148. doi: 10.3389/fphys.2021.805148. eCollection 2021.
6
The Gene Family: From Embryo to Disease.
Front Mol Neurosci. 2021 Jun 28;14:672511. doi: 10.3389/fnmol.2021.672511. eCollection 2021.
9
Adult mesenchymal stem cells: is there a role for purine receptors in their osteogenic differentiation?
Purinergic Signal. 2020 Sep;16(3):263-287. doi: 10.1007/s11302-020-09703-4. Epub 2020 Jun 4.
10
Census of halide-binding sites in protein structures.
Bioinformatics. 2020 May 1;36(10):3064-3071. doi: 10.1093/bioinformatics/btaa079.

本文引用的文献

1
Cultured ruminal epithelial cells express a large-conductance channel permeable to chloride, bicarbonate, and acetate.
Pflugers Arch. 2009 Mar;457(5):1003-22. doi: 10.1007/s00424-008-0566-6. Epub 2008 Aug 21.
3
ATP release via anion channels.
Purinergic Signal. 2005 Dec;1(4):311-28. doi: 10.1007/s11302-005-1557-0. Epub 2005 Dec 3.
4
Oxygen-glucose deprivation induces ATP release via maxi-anion channels in astrocytes.
Purinergic Signal. 2008 Jun;4(2):147-54. doi: 10.1007/s11302-007-9077-8. Epub 2007 Sep 12.
5
Spatial distribution of maxi-anion channel on cardiomyocytes detected by smart-patch technique.
Biophys J. 2008 Mar 1;94(5):1646-55. doi: 10.1529/biophysj.107.117820. Epub 2007 Nov 16.
6
Potential biomedical applications of the scanned nanopipette.
Nanomedicine (Lond). 2006 Jun;1(1):107-14. doi: 10.2217/17435889.1.1.107.
7
The maxi-chloride channel in human syncytiotrophoblast: a pathway for taurine efflux in placental volume regulation?
Placenta. 2007 Nov-Dec;28(11-12):1182-91. doi: 10.1016/j.placenta.2007.06.005. Epub 2007 Aug 6.
8
Apical Maxi-chloride channel from human placenta: 12 years after the first electrophysiological recordings.
Biol Res. 2006;39(3):437-45. doi: 10.4067/s0716-97602006000300006. Epub 2006 Nov 7.
10
Swelling-activated chloride channels in aqueous humour formation: on the one side and the other.
Acta Physiol (Oxf). 2006 May-Jun;187(1-2):345-52. doi: 10.1111/j.1748-1716.2006.01548.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验