Sabirov Ravshan Z, Islam Md Rafiqul, Okada Toshiaki, Merzlyak Petr G, Kurbannazarova Ranokhon S, Tsiferova Nargiza A, Okada Yasunobu
Division of Cell Signaling, National Institute for Physiological Sciences (NIPS), Okazaki 444-8787, Japan.
Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent 100174, Uzbekistan.
Life (Basel). 2021 May 31;11(6):509. doi: 10.3390/life11060509.
The Maxi-Cl phenotype accounts for the majority (app. 60%) of reports on the large-conductance maxi-anion channels (MACs) and has been detected in almost every type of cell, including placenta, endothelium, lymphocyte, cardiac myocyte, neuron, and glial cells, and in cells originating from humans to frogs. A unitary conductance of 300-400 pS, linear current-to-voltage relationship, relatively high anion-to-cation selectivity, bell-shaped voltage dependency, and sensitivity to extracellular gadolinium are biophysical and pharmacological hallmarks of the Maxi-Cl channel. Its identification as a complex with SLCO2A1 as a core pore-forming component and two auxiliary regulatory proteins, annexin A2 and S100A10 (p11), explains the activation mechanism as Tyr23 dephosphorylation at ANXA2 in parallel with calcium binding at S100A10. In the resting state, SLCO2A1 functions as a prostaglandin transporter whereas upon activation it turns to an anion channel. As an efficient pathway for chloride, Maxi-Cl is implicated in a number of physiologically and pathophysiologically important processes, such as cell volume regulation, fluid secretion, apoptosis, and charge transfer. Maxi-Cl is permeable for ATP and other small signaling molecules serving as an electrogenic pathway in cell-to-cell signal transduction. Mutations at the gene cause inherited bone and gut pathologies and malignancies, signifying the Maxi-Cl channel as a perspective pharmacological target.
大电导Maxi-阴离子通道(MACs)的报道中,Maxi-Cl表型占了大多数(约60%),并且几乎在每种类型的细胞中都被检测到,包括胎盘、内皮细胞、淋巴细胞、心肌细胞、神经元和神经胶质细胞,以及从人类到青蛙的各种细胞。300 - 400 pS的单通道电导、线性电流-电压关系、相对较高的阴离子对阳离子选择性、钟形电压依赖性以及对细胞外钆的敏感性,是Maxi-Cl通道的生物物理和药理学特征。它被鉴定为一种复合物,其核心成孔成分是SLCO2A1,还有两种辅助调节蛋白,膜联蛋白A2和S100A10(p11),这解释了其激活机制是ANXA2上的Tyr23去磷酸化,同时S100A10上结合钙。在静息状态下,SLCO2A1作为前列腺素转运体发挥作用,而激活后它转变为阴离子通道。作为氯离子的有效途径,Maxi-Cl参与了许多生理和病理生理上重要的过程,如细胞体积调节、液体分泌、细胞凋亡和电荷转移。Maxi-Cl对ATP和其他小信号分子具有通透性,在细胞间信号转导中作为一条生电途径。该基因的突变会导致遗传性骨骼和肠道疾病以及恶性肿瘤,这表明Maxi-Cl通道是一个有前景的药理学靶点。