Suppr超能文献

对来自墨西哥根瘤菌的丙酮酸羧化酶羧基转移酶结构域机制的深入了解。

Insight into the carboxyl transferase domain mechanism of pyruvate carboxylase from Rhizobium etli.

作者信息

Zeczycki Tonya N, St Maurice Martin, Jitrapakdee Sarawut, Wallace John C, Attwood Paul V, Cleland W Wallace

机构信息

Institute for Enzyme Research and Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53726, USA.

出版信息

Biochemistry. 2009 May 26;48(20):4305-13. doi: 10.1021/bi9003759.

Abstract

The effects of mutations in the active site of the carboxyl transferase domain of Rhizobium etli pyruvate carboxylase have been determined for the forward reaction to form oxaloacetate, the reverse reaction to form MgATP, the oxamate-induced decarboxylation of oxaloacetate, the phosphorylation of MgADP by carbamoyl phosphate, and the bicarbonate-dependent ATPase reaction. Additional studies with these mutants examined the effect of pyruvate and oxamate on the reactions of the biotin carboxylase domain. From these mutagenic studies, putative roles for catalytically relevant active site residues were assigned and a more accurate description of the mechanism of the carboxyl transferase domain is presented. The T882A mutant showed no catalytic activity for reactions involving the carboxyl transferase domain but surprisingly showed 7- and 3.5-fold increases in activity, as compared to that of the wild-type enzyme, for the ADP phosphorylation and bicarbonate-dependent ATPase reactions, respectively. Furthermore, the partial inhibition of the T882A-catalyzed BC domain reactions by oxamate and pyruvate further supports the critical role of Thr882 in the proton transfer between biotin and pyruvate in the carboxyl transferase domain. The catalytic mechanism appears to involve the decarboxylation of carboxybiotin and removal of a proton from Thr882 by the resulting biotin enolate with either a concerted or subsequent transfer of a proton from pyruvate to Thr882. The resulting enolpyruvate then reacts with CO(2) to form oxaloacetate and complete the reaction.

摘要

已确定了慢生根瘤菌丙酮酸羧化酶羧基转移酶结构域活性位点突变对正向反应(生成草酰乙酸)、逆向反应(生成MgATP)、氨基甲酸酯诱导的草酰乙酸脱羧反应、氨基甲酰磷酸对MgADP的磷酸化反应以及碳酸氢盐依赖性ATP酶反应的影响。对这些突变体进行的其他研究考察了丙酮酸和氨基甲酸酯对生物素羧化酶结构域反应的影响。通过这些诱变研究,确定了催化相关活性位点残基的假定作用,并对羧基转移酶结构域的机制进行了更准确的描述。T882A突变体对涉及羧基转移酶结构域的反应没有催化活性,但令人惊讶的是,与野生型酶相比,其ADP磷酸化反应和碳酸氢盐依赖性ATP酶反应的活性分别提高了7倍和3.5倍。此外,氨基甲酸酯和丙酮酸对T882A催化的BC结构域反应的部分抑制进一步支持了Thr882在羧基转移酶结构域中生物素与丙酮酸之间质子转移中的关键作用。催化机制似乎涉及羧基生物素的脱羧反应,以及由此产生的生物素烯醇化物从Thr882上去除一个质子,随后质子从丙酮酸协同或依次转移至Thr882。生成的烯醇丙酮酸然后与CO₂反应形成草酰乙酸并完成反应。

相似文献

1
3
Insights into the carboxyltransferase reaction of pyruvate carboxylase from the structures of bound product and intermediate analogs.
Biochem Biophys Res Commun. 2013 Nov 15;441(2):377-82. doi: 10.1016/j.bbrc.2013.10.066. Epub 2013 Oct 22.
4
The role of biotin and oxamate in the carboxyltransferase reaction of pyruvate carboxylase.
Arch Biochem Biophys. 2014 Nov 15;562:70-9. doi: 10.1016/j.abb.2014.08.008. Epub 2014 Aug 23.
6
Novel insights into the biotin carboxylase domain reactions of pyruvate carboxylase from Rhizobium etli.
Biochemistry. 2011 Nov 15;50(45):9724-37. doi: 10.1021/bi2012788. Epub 2011 Oct 13.
7
A substrate-induced biotin binding pocket in the carboxyltransferase domain of pyruvate carboxylase.
J Biol Chem. 2013 Jul 5;288(27):19915-25. doi: 10.1074/jbc.M113.477828. Epub 2013 May 22.
8
Activation and inhibition of pyruvate carboxylase from Rhizobium etli.
Biochemistry. 2011 Nov 15;50(45):9694-707. doi: 10.1021/bi201276r. Epub 2011 Oct 14.
9
Oxamate is an alternative substrate for pyruvate carboxylase from Rhizobium etli.
Biochemistry. 2013 Apr 30;52(17):2888-94. doi: 10.1021/bi400075t. Epub 2013 Apr 18.
10
Mechanisms of inhibition of Rhizobium etli pyruvate carboxylase by L-aspartate.
Biochemistry. 2014 Nov 18;53(45):7100-6. doi: 10.1021/bi501113u. Epub 2014 Nov 6.

引用本文的文献

1
Conformational Selection Governs Carrier Domain Positioning in Pyruvate Carboxylase.
Biochemistry. 2022 Sep 6;61(17):1824-1835. doi: 10.1021/acs.biochem.2c00298. Epub 2022 Aug 9.
2
Pyruvate carboxylase and cancer progression.
Cancer Metab. 2021 Apr 30;9(1):20. doi: 10.1186/s40170-021-00256-7.
3
Allosteric regulation alters carrier domain translocation in pyruvate carboxylase.
Nat Commun. 2018 Apr 11;9(1):1384. doi: 10.1038/s41467-018-03814-8.
4
The role of biotin and oxamate in the carboxyltransferase reaction of pyruvate carboxylase.
Arch Biochem Biophys. 2014 Nov 15;562:70-9. doi: 10.1016/j.abb.2014.08.008. Epub 2014 Aug 23.
5
Coordinating role of His216 in MgATP binding and cleavage in pyruvate carboxylase.
Biochemistry. 2014 Feb 18;53(6):1051-8. doi: 10.1021/bi4016814. Epub 2014 Feb 5.
6
Insights into the carboxyltransferase reaction of pyruvate carboxylase from the structures of bound product and intermediate analogs.
Biochem Biophys Res Commun. 2013 Nov 15;441(2):377-82. doi: 10.1016/j.bbrc.2013.10.066. Epub 2013 Oct 22.
7
A substrate-induced biotin binding pocket in the carboxyltransferase domain of pyruvate carboxylase.
J Biol Chem. 2013 Jul 5;288(27):19915-25. doi: 10.1074/jbc.M113.477828. Epub 2013 May 22.
8
Oxamate is an alternative substrate for pyruvate carboxylase from Rhizobium etli.
Biochemistry. 2013 Apr 30;52(17):2888-94. doi: 10.1021/bi400075t. Epub 2013 Apr 18.
9
Searching for resistance genes to Bursaphelenchus xylophilus using high throughput screening.
BMC Genomics. 2012 Nov 7;13:599. doi: 10.1186/1471-2164-13-599.
10
Roles of Arg427 and Arg472 in the binding and allosteric effects of acetyl CoA in pyruvate carboxylase.
Biochemistry. 2012 Oct 16;51(41):8208-17. doi: 10.1021/bi301060d. Epub 2012 Oct 2.

本文引用的文献

1
Structural evidence for substrate-induced synergism and half-sites reactivity in biotin carboxylase.
Protein Sci. 2008 Oct;17(10):1706-18. doi: 10.1110/ps.035584.108. Epub 2008 Aug 25.
2
Structure, mechanism and regulation of pyruvate carboxylase.
Biochem J. 2008 Aug 1;413(3):369-87. doi: 10.1042/BJ20080709.
5
Domain architecture of pyruvate carboxylase, a biotin-dependent multifunctional enzyme.
Science. 2007 Aug 24;317(5841):1076-9. doi: 10.1126/science.1144504.
7
Anaplerotic roles of pyruvate carboxylase in mammalian tissues.
Cell Mol Life Sci. 2006 Apr;63(7-8):843-54. doi: 10.1007/s00018-005-5410-y.
8
Crystal structure, catalytic mechanism, and mitogenic properties of Trypanosoma cruzi proline racemase.
Proc Natl Acad Sci U S A. 2006 Feb 7;103(6):1705-10. doi: 10.1073/pnas.0509010103. Epub 2006 Jan 30.
10
Transcarboxylase 5S structures: assembly and catalytic mechanism of a multienzyme complex subunit.
EMBO J. 2004 Sep 15;23(18):3621-31. doi: 10.1038/sj.emboj.7600373. Epub 2004 Aug 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验