Choi Jonglak, Gillan Edward G
Department of Chemistry and the Nanoscience and Nanotechnology Institute, University of Iowa, Iowa City, Iowa 52242, USA.
Inorg Chem. 2009 May 18;48(10):4470-7. doi: 10.1021/ic900260u.
This paper describes the use of solvothermally moderated metal azide decomposition as a route to nanocrystalline mid to late transition metal nitrides. This method utilizes exothermic solid-state metathesis reaction precursor pairs, namely, metal halides (NiBr(2), FeCl(3), MnCl(2)) and sodium azide, but conducts the metathesis reaction and azide decomposition in superheated toluene. The reaction temperatures are relatively low (<300 degrees C) and yield thermally metastable nanocrystalline hexagonal Ni(3)N and Fe(2)N, and tetragonal MnN. These solvothermally moderated metal nitride metathesis reactions require several days to produce high yields of the intended nitrides. The products are aggregated nanoparticulates with room temperature magnetic properties consistent with their known bulk structures, for example, Fe(2)N and Ni(3)N are known ferromagnets. The stirred reactions with dispersed fine reagent powders benefit from solvothermal moderation more effectively than submerged pressed reagent pellets. Pellet reactions produced manganese nitrides with lower nitrogen content and higher aggregation than loose powder reactions, consistent with the occurrence of significant local exothermic heating in the pellet metathesis reactions.
本文描述了使用溶剂热调节的金属叠氮化物分解作为制备纳米晶态中晚期过渡金属氮化物的一种途径。该方法利用放热固态复分解反应前驱体对,即金属卤化物(NiBr₂、FeCl₃、MnCl₂)和叠氮化钠,但在过热甲苯中进行复分解反应和叠氮化物分解。反应温度相对较低(<300℃),生成热亚稳的纳米晶态六方Ni₃N和Fe₂N以及四方MnN。这些溶剂热调节的金属氮化物复分解反应需要几天时间才能高产率地生成预期的氮化物。产物是聚集的纳米颗粒,其室温磁性与其已知的块状结构一致,例如,Fe₂N和Ni₃N是已知的铁磁体。与浸没压制的试剂颗粒相比,分散细试剂粉末的搅拌反应更有效地受益于溶剂热调节。颗粒反应生成的氮化锰比松散粉末反应的氮含量更低且聚集程度更高,这与颗粒复分解反应中发生显著的局部放热加热一致。