Suppr超能文献

蛋白质聚集研究中动力学数据的模型判别与机理阐释

Model discrimination and mechanistic interpretation of kinetic data in protein aggregation studies.

作者信息

Bernacki Joseph P, Murphy Regina M

机构信息

Department of Chemical and Biological Engineering, University of Wisconsin, Madison, Wisconsin, USA.

出版信息

Biophys J. 2009 Apr 8;96(7):2871-87. doi: 10.1016/j.bpj.2008.12.3903.

Abstract

Given the importance of protein aggregation in amyloid diseases and in the manufacture of protein pharmaceuticals, there has been increased interest in measuring and modeling the kinetics of protein aggregation. Several groups have analyzed aggregation data quantitatively, typically measuring aggregation kinetics by following the loss of protein monomer over time and invoking a nucleated growth mechanism. Such analysis has led to mechanistic conclusions about the size and nature of the nucleus, the aggregation pathway, and/or the physicochemical properties of aggregation-prone proteins. We have examined some of the difficulties that arise when extracting mechanistic meaning from monomer-loss kinetic data. Using literature data on the aggregation of polyglutamine, a mutant beta-clam protein, and protein L, we determined parameter values for 18 different kinetic models. We developed a statistical model discrimination method to analyze protein aggregation data in light of competing mechanisms; a key feature of the method is that it penalizes overparameterization. We show that, for typical monomer-loss kinetic data, multiple models provide equivalent fits, making mechanistic determination impossible. We also define the type and quality of experimental data needed to make more definitive conclusions about the mechanism of aggregation. Specifically, we demonstrate how direct measurement of fibril size provides robust discrimination.

摘要

鉴于蛋白质聚集在淀粉样疾病和蛋白质药物制造中的重要性,人们对测量和模拟蛋白质聚集动力学的兴趣日益增加。几个研究小组已经对聚集数据进行了定量分析,通常通过跟踪蛋白质单体随时间的损失来测量聚集动力学,并采用成核生长机制。这种分析得出了关于核的大小和性质、聚集途径和/或易聚集蛋白质的物理化学性质的机制性结论。我们研究了从单体损失动力学数据中提取机制意义时出现的一些困难。利用关于聚谷氨酰胺、一种突变β-蛤蛋白和蛋白质L聚集的文献数据,我们确定了18种不同动力学模型的参数值。我们开发了一种统计模型判别方法,根据相互竞争的机制来分析蛋白质聚集数据;该方法的一个关键特征是它会惩罚过度参数化。我们表明,对于典型的单体损失动力学数据,多个模型提供等效的拟合,使得无法确定机制。我们还定义了为了对聚集机制得出更明确结论所需的实验数据的类型和质量。具体来说,我们展示了如何通过直接测量原纤维大小来提供有力的判别。

相似文献

1
Model discrimination and mechanistic interpretation of kinetic data in protein aggregation studies.
Biophys J. 2009 Apr 8;96(7):2871-87. doi: 10.1016/j.bpj.2008.12.3903.
3
An efficient kinetic model for assemblies of amyloid fibrils and its application to polyglutamine aggregation.
PLoS One. 2012;7(11):e43273. doi: 10.1371/journal.pone.0043273. Epub 2012 Nov 13.
4
Protein aggregation kinetics, mechanism, and curve-fitting: a review of the literature.
Biochim Biophys Acta. 2009 Mar;1794(3):375-97. doi: 10.1016/j.bbapap.2008.10.016. Epub 2008 Nov 11.
5
Interpreting the aggregation kinetics of amyloid peptides.
J Mol Biol. 2006 Jul 21;360(4):882-92. doi: 10.1016/j.jmb.2006.05.033. Epub 2006 Jun 5.
6
Diversity of kinetic pathways in amyloid fibril formation.
J Chem Phys. 2009 Sep 21;131(11):111102. doi: 10.1063/1.3216103.
8
Exposure of Aggregation-Prone Segments is the Requirement for Amyloid Fibril Formation.
Curr Protein Pept Sci. 2018;19(10):1024-1035. doi: 10.2174/1389203719666180521091647.
9
Reconsidering the mechanism of polyglutamine peptide aggregation.
Biochemistry. 2007 Nov 6;46(44):12810-20. doi: 10.1021/bi700806c. Epub 2007 Oct 11.
10
Contrasting disease and nondisease protein aggregation by molecular simulation.
Acc Chem Res. 2008 Aug;41(8):1037-47. doi: 10.1021/ar800062k. Epub 2008 Jul 23.

引用本文的文献

1
Organic reaction mechanism classification using machine learning.
Nature. 2023 Jan;613(7945):689-695. doi: 10.1038/s41586-022-05639-4. Epub 2023 Jan 25.
2
Probing the Occurrence of Soluble Oligomers through Amyloid Aggregation Scaling Laws.
Biomolecules. 2018 Oct 4;8(4):108. doi: 10.3390/biom8040108.
3
A mechanistic model to predict effects of cathepsin B and cystatin C on β-amyloid aggregation and degradation.
J Biol Chem. 2017 Dec 22;292(51):21071-21082. doi: 10.1074/jbc.M117.811448. Epub 2017 Oct 18.
4
Evaluation of Nanoparticle Tracking for Characterization of Fibrillar Protein Aggregates.
AIChE J. 2014 Apr 1;60(4):1236-1244. doi: 10.1002/aic.14349.
5
The emerging role of the first 17 amino acids of huntingtin in Huntington's disease.
Biomol Concepts. 2015 Mar;6(1):33-46. doi: 10.1515/bmc-2015-0001.
6
The effect of glycosaminoglycans (GAGs) on amyloid aggregation and toxicity.
Molecules. 2015 Feb 2;20(2):2510-28. doi: 10.3390/molecules20022510.
7
Effect of arginine on pre-nucleus stage of interferon beta-1b aggregation.
AAPS PharmSciTech. 2014 Dec;15(6):1619-29. doi: 10.1208/s12249-014-0192-x. Epub 2014 Aug 21.
8
Modeling of chemical inhibition from amyloid protein aggregation kinetics.
BMC Pharmacol Toxicol. 2014 Feb 27;15:9. doi: 10.1186/2050-6511-15-9.
9
Computational modeling of the relationship between amyloid and disease.
Biophys Rev. 2012 Sep;4(3):205-222. doi: 10.1007/s12551-012-0091-x.
10
Fibrillogenesis of huntingtin and other glutamine containing proteins.
Subcell Biochem. 2012;65:225-51. doi: 10.1007/978-94-007-5416-4_10.

本文引用的文献

2
Systematic analysis of nucleation-dependent polymerization reveals new insights into the mechanism of amyloid self-assembly.
Proc Natl Acad Sci U S A. 2008 Jul 1;105(26):8926-31. doi: 10.1073/pnas.0711664105. Epub 2008 Jun 25.
3
Amide inequivalence in the fibrillar assembly of islet amyloid polypeptide.
Protein Eng Des Sel. 2008 Mar;21(3):147-54. doi: 10.1093/protein/gzm076.
5
Protein aggregation processes: In search of the mechanism.
Protein Sci. 2007 Nov;16(11):2334-44. doi: 10.1110/ps.073164107.
6
A polymer physics perspective on driving forces and mechanisms for protein aggregation.
Arch Biochem Biophys. 2008 Jan 1;469(1):132-41. doi: 10.1016/j.abb.2007.08.033. Epub 2007 Sep 15.
7
Reconsidering the mechanism of polyglutamine peptide aggregation.
Biochemistry. 2007 Nov 6;46(44):12810-20. doi: 10.1021/bi700806c. Epub 2007 Oct 11.
8
Mechanisms of protein fibril formation: nucleated polymerization with competing off-pathway aggregation.
Biophys J. 2008 Jan 15;94(2):379-91. doi: 10.1529/biophysj.107.117168. Epub 2007 Sep 21.
9
Non-native protein aggregation kinetics.
Biotechnol Bioeng. 2007 Dec 1;98(5):927-38. doi: 10.1002/bit.21627.
10
Fiber-dependent amyloid formation as catalysis of an existing reaction pathway.
Proc Natl Acad Sci U S A. 2007 Jul 24;104(30):12341-6. doi: 10.1073/pnas.0703306104. Epub 2007 Jul 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验