Suppr超能文献

使用改进方法和延长随访时间对神经母细胞瘤表达谱数据进行重新分析,可提高预后预测的有效性。

Reanalysis of neuroblastoma expression profiling data using improved methodology and extended follow-up increases validity of outcome prediction.

作者信息

Schramm Alexander, Mierswa Ingo, Kaderali Lars, Morik Katharina, Eggert Angelika, Schulte Johannes H

机构信息

Department of Pediatric Oncology and Haematology, University Children's Hospital Essen, Hufelandstrasse 55, Essen, Germany.

出版信息

Cancer Lett. 2009 Sep 8;282(1):55-62. doi: 10.1016/j.canlet.2009.02.052. Epub 2009 Apr 5.

Abstract

Neuroblastoma is the most common extracranial childhood tumor, comprising 15% of all childhood cancer deaths. In an initial study, we used Affymetrix oligonucleotide microarrays to analyse gene expression in 68 primary neuroblastomas and compared different data mining approaches for prediction of early relapse. Here, we performed re-analyses of the data including prolonged follow-up and applied support vector machine (SVM) algorithms and outer cross-validation strategies to improve reliability of expression profiling based predictors. Accuracy of outcome prediction was significantly improved by the use of innovative SVM algorithms on the updated data. In addition, CASPAR, a hierarchical Bayesian approach, was used to predict survival times for the individual patient based on expression profiling data. CASPAR reliably predicted event-free survival, given a cut-off time of three years. Differential expression of genes used by CASPAR to predict patient outcome was validated in an independent cohort of 117 neuroblastomas. In conclusion, we show here for the first time that reanalysis of microarray data using improved methodology, state-of-the-art performance tests and updated follow-up data improves prognosis prediction, and may further improve risk stratification of individual patients.

摘要

神经母细胞瘤是儿童最常见的颅外肿瘤,占儿童癌症死亡总数的15%。在一项初步研究中,我们使用Affymetrix寡核苷酸微阵列分析了68例原发性神经母细胞瘤的基因表达,并比较了不同的数据挖掘方法以预测早期复发。在此,我们对数据进行了重新分析,包括延长随访时间,并应用支持向量机(SVM)算法和外部交叉验证策略,以提高基于表达谱的预测指标的可靠性。通过在更新数据上使用创新的SVM算法,结果预测的准确性得到了显著提高。此外,还使用了一种分层贝叶斯方法CASPAR,根据表达谱数据预测个体患者的生存时间。在设定三年的截止时间时,CASPAR可靠地预测了无事件生存期。CASPAR用于预测患者预后的基因差异表达在一个由117例神经母细胞瘤组成的独立队列中得到了验证。总之,我们首次在此表明,使用改进的方法、先进的性能测试和更新的随访数据对微阵列数据进行重新分析可改善预后预测,并可能进一步改善个体患者的风险分层。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验