Center for Medical Genetics, Ghent University, Ghent University Hospital, Ghent, Belgium.
Clin Cancer Res. 2010 Mar 1;16(5):1532-41. doi: 10.1158/1078-0432.CCR-09-2607. Epub 2010 Feb 23.
Reliable prognostic stratification remains a challenge for cancer patients, especially for diseases with variable clinical course such as neuroblastoma. Although numerous studies have shown that outcome might be predicted using gene expression signatures, independent cross-platform validation is often lacking.
Using eight independent studies comprising 933 neuroblastoma patients, a prognostic gene expression classifier was developed, trained, tested, and validated. The classifier was established based on reanalysis of four published studies with updated clinical information, reannotation of the probe sequences, common risk definition for training cases, and a single method for gene selection (prediction analysis of microarray) and classification (correlation analysis).
Based on 250 training samples from four published microarray data sets, a correlation signature was built using 42 robust prognostic genes. The resulting classifier was validated on 351 patients from four independent and unpublished data sets and on 129 remaining test samples from the published studies. Patients with divergent outcome in the total cohort, as well as in the different risk groups, were accurately classified (log-rank P < 0.001 for overall and progression-free survival in the four independent data sets). Moreover, the 42-gene classifier was shown to be an independent predictor for survival (odds ratio, >5).
The strength of this 42-gene classifier is its small number of genes and its cross-platform validity in which it outperforms other published prognostic signatures. The robustness and accuracy of the classifier enables prospective assessment of neuroblastoma patient outcome. Most importantly, this gene selection procedure might be an example for development and validation of robust gene expression signatures in other cancer entities.
可靠的预后分层仍然是癌症患者面临的挑战,尤其是对于那些临床过程变化较大的疾病,如神经母细胞瘤。虽然许多研究表明,使用基因表达谱可以预测预后,但通常缺乏独立的跨平台验证。
利用包含 933 例神经母细胞瘤患者的 8 项独立研究,开发、训练、测试和验证了一种预后基因表达分类器。该分类器是基于对 4 项已发表研究的重新分析、探针序列的重新注释、训练病例的共同风险定义以及单一的基因选择(微阵列分析预测)和分类(相关分析)方法建立的。
基于来自 4 个已发表微阵列数据集的 250 个训练样本,使用 42 个稳健的预后基因构建了一个相关特征。基于来自 4 个独立且未发表的数据集的 351 例患者和来自已发表研究的 129 例剩余测试样本,对该分类器进行了验证。在整个队列以及不同风险组中,具有不同结局的患者得到了准确的分类(4 个独立数据集的总生存期和无进展生存期的对数秩 P < 0.001)。此外,42 基因分类器被证明是生存的独立预测因子(优势比,>5)。
该 42 基因分类器的优势在于其基因数量少,且在跨平台验证中优于其他已发表的预后标志物。该分类器的稳健性和准确性使得能够对神经母细胞瘤患者的预后进行前瞻性评估。最重要的是,这种基因选择程序可能为其他癌症实体中稳健基因表达标志物的开发和验证提供了一个范例。