Quek Su Ying, Kamenetska Maria, Steigerwald Michael L, Choi Hyoung Joon, Louie Steven G, Hybertsen Mark S, Neaton J B, Venkataraman Latha
Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
Nat Nanotechnol. 2009 Apr;4(4):230-4. doi: 10.1038/nnano.2009.10. Epub 2009 Mar 1.
Molecular-scale components are expected to be central to the realization of nanoscale electronic devices. Although molecular-scale switching has been reported in atomic quantum point contacts, single-molecule junctions provide the additional flexibility of tuning the on/off conductance states through molecular design. To date, switching in single-molecule junctions has been attributed to changes in the conformation or charge state of the molecule. Here, we demonstrate reversible binary switching in a single-molecule junction by mechanical control of the metal-molecule contact geometry. We show that 4,4'-bipyridine-gold single-molecule junctions can be reversibly switched between two conductance states through repeated junction elongation and compression. Using first-principles calculations, we attribute the different measured conductance states to distinct contact geometries at the flexible but stable nitrogen-gold bond: conductance is low when the N-Au bond is perpendicular to the conducting pi-system, and high otherwise. This switching mechanism, inherent to the pyridine-gold link, could form the basis of a new class of mechanically activated single-molecule switches.
分子尺度的组件有望成为实现纳米级电子器件的核心。尽管在原子量子点接触中已报道了分子尺度的开关,但单分子结通过分子设计提供了额外的灵活性来调节导通/截止电导状态。迄今为止,单分子结中的开关现象归因于分子构象或电荷状态的变化。在此,我们通过对金属-分子接触几何结构的机械控制,展示了单分子结中的可逆二进制开关。我们表明,4,4'-联吡啶-金单分子结可以通过重复的结伸长和压缩在两个电导状态之间可逆地切换。使用第一性原理计算,我们将不同的测量电导状态归因于在柔性但稳定的氮-金键处的不同接触几何结构:当N-Au键垂直于导电π体系时,电导较低,否则较高。这种吡啶-金连接所固有的开关机制可能构成一类新型机械激活单分子开关的基础。