Suppr超能文献

铵基封端的碳桥连亚苯基乙烯基中超过3纳米的高分子电导率和反向电导衰减

High Molecular Conductance and Inverted Conductance Decay over 3 nm in Aminium-Terminated Carbon-Bridged Oligophenylene-Vinylenes.

作者信息

Rieger Luisa K I, Leitherer Susanne, Bro-Jørgensen William, Solomon Gemma C, Winter Rainer F

机构信息

Department of Chemistry, University of Konstanz, 78434 Konstanz, Germany.

Nano-Science Center and Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark.

出版信息

J Am Chem Soc. 2025 Jan 8;147(1):957-964. doi: 10.1021/jacs.4c13901. Epub 2024 Dec 20.

Abstract

With the progressing miniaturization of electronic device components to improve circuit density while retaining or even reducing spatial requirements, single molecules employed as electric components define the lower limit of accessible structural width. To circumvent the typical exponential conductance decay for increasing length in molecule-based wires, topological states, which describe the occurrence of discontinuities of a bulk material's electronic structure confined to its surface, can be realized for molecules by the introduction of unpaired spins at the molecular termini. The resulting high conductance and reversed conductance decay are typically only observed for shorter molecules, as the terminal spins must be within the electronic coupling range to produce the desired effects. We expand the realm of long and exceptionally conductive molecular wires by employing highly conjugated, planarized carbon-bridged oligo(phenylene-vinylene)s as conduits between readily oxidizable diarylamine termini. This yields molecular wires of already decent conductance values and small conductance decay in the neutral state. Upon the introduction of topological states, the conductance can be increased by a factor of up to 1800 for a 3 nm long molecule, and the conductance decay becomes inverted, together with an excellent signal intensity at concentrations as low as 0.01 mM.

摘要

随着电子设备组件不断小型化以提高电路密度,同时保持甚至降低空间需求,用作电子组件的单分子定义了可达到的结构宽度下限。为规避基于分子的导线中随着长度增加典型的指数型电导衰减,通过在分子末端引入未成对自旋,分子可实现拓扑态,拓扑态描述了局限于大块材料表面的电子结构不连续性的出现。通常只有较短分子才会观察到由此产生的高电导和反向电导衰减,因为末端自旋必须在电子耦合范围内才能产生预期效果。我们通过使用高度共轭、平面化的碳桥连聚(亚苯基乙烯撑)作为易于氧化的二芳基胺末端之间的传导通道,扩展了长且具有异常高导电性的分子导线的领域。这产生了在中性状态下已经具有相当不错的电导值且电导衰减较小的分子导线。引入拓扑态后,对于一个3纳米长的分子,电导可增加高达1800倍,电导衰减变为反向,并且在低至0.01 mM的浓度下具有出色的信号强度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/00c3/11726558/c2516f381f01/ja4c13901_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验