Flores-Barrera Edén, Laville Antonio, Plata Victor, Tapia Dagoberto, Bargas José, Galarraga Elvira
Departamento de Biofísica, Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México, P.O. Box: 70-253, 04510, Mexico City, DF, Mexico.
Cell Mol Neurobiol. 2009 Jul;29(5):719-31. doi: 10.1007/s10571-009-9394-2. Epub 2009 Apr 7.
Neostriatal neurons may undergo events of spontaneous synchronization as those observed in recurrent networks of excitatory neurons, even when cortical afferents are transected. It is necessary to explain these events because the neostriatum is a recurrent network of inhibitory neurons. Synchronization of neuronal activity may be caused by plateau-like depolarizations. Plateau-like orthodromic depolarizations that resemble up-states in medium spiny neostriatal neurons (MSNs) may be induced by a single corticostriatal suprathreshold stimulus. Slow synaptic depolarizations may last hundreds of milliseconds, decay slower than the monosynaptic glutamatergic synaptic potentials that induce them, and sustain repetitive firing. Because inhibitory inputs impinging onto MSNs have a reversal potential above the resting membrane potential but below the threshold for firing, they conform a type of "shunting inhibition". This work asks if shunting GABAergic inputs onto MSNs arrive asynchronously enough as to help in sustaining the plateau-like corticostriatal response after a single cortical stimulus. This may help to begin explaining autonomous processing in the striatal micro-circuitry in the presence of a tonic excitatory drive and independently of spatio-temporally organized inputs. It is shown here that besides synaptic currents from AMPA/KA- and NMDA-receptors, as well as L-type intrinsic Ca(2+)- currents, inhibitory synapses help in maintaining the slow depolarization, although they accomplish the role of depressing firing at the beginning of the response. We then used a NEURON model of spiny cells to show that inhibitory synapses arriving asynchronously on the dendrites can help to simulate a plateau potential similar to that observed experimentally.
即使切断皮质传入神经,新纹状体神经元仍可能发生自发同步事件,就像在兴奋性神经元的递归网络中观察到的那样。有必要解释这些事件,因为新纹状体是一个抑制性神经元的递归网络。神经元活动的同步可能由平台样去极化引起。类似于中等棘状新纹状体神经元(MSN)的上升状态的平台样顺向去极化可能由单个皮质纹状体阈上刺激诱导。缓慢的突触去极化可能持续数百毫秒,衰减比诱导它们的单突触谷氨酸能突触电位慢,并维持重复放电。因为作用于MSN的抑制性输入具有高于静息膜电位但低于放电阈值的反转电位,它们构成了一种“分流抑制”。这项研究探讨作用于MSN的分流性GABA能输入是否足够异步到达,以帮助在单个皮质刺激后维持平台样皮质纹状体反应。这可能有助于开始解释在存在紧张性兴奋性驱动且独立于时空组织输入的情况下,纹状体微电路中的自主处理过程。本文表明,除了来自AMPA/KA受体和NMDA受体的突触电流以及L型内向钙电流外,抑制性突触有助于维持缓慢的去极化,尽管它们在反应开始时起到抑制放电的作用。然后,我们使用棘状细胞的NEURON模型表明,异步到达树突的抑制性突触可以帮助模拟类似于实验观察到的平台电位。