División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México México City, México.
Front Syst Neurosci. 2010 Jun 10;4:15. doi: 10.3389/fnsys.2010.00015. eCollection 2010.
The striatum is the principal input structure of the basal ganglia. Major glutamatergic afferents to the striatum come from the cerebral cortex and make monosynaptic contacts with medium spiny projection neurons (MSNs) and interneurons. Also: glutamatergic afferents to the striatum come from the thalamus. Despite differences in axonal projections, dopamine (DA) receptors expression and differences in excitability between MSNs from "direct" and "indirect" basal ganglia pathways, these neuronal classes have been thought as electrophysiologically very similar. Based on work with bacterial artificial chromosome (BAC) transgenic mice, here it is shown that corticostriatal responses in D(1)- and D(2)-receptor expressing MSNs (D(1)- and D(2)-MSNs) are radically different so as to establish an electrophysiological footprint that readily differentiates between them. Experiments in BAC mice allowed us to predict, with high probability (P > 0.9), in rats or non-BAC mice, whether a recorded neuron, from rat or mouse, was going to be substance P or enkephalin (ENK) immunoreactive. Responses are more prolonged and evoke more action potentials in D(1)-MSNs, while they are briefer and exhibit intrinsic autoregenerative responses in D(2)-MSNs. A main cause for these differences was the interaction of intrinsic properties with the inhibitory contribution in each response. Inhibition always depressed corticostriatal depolarization in D(2)-MSNs, while it helped in sustaining prolonged depolarizations in D(1)-MSNs, in spite of depressing early discharge. Corticostriatal responses changed dramatically after striatal DA depletion in 6-hydroxy-dopamine (6-OHDA) lesioned animals: a response reduction was seen in substance P (SP)+ MSNs whereas an enhanced response was seen in ENK+ MSNs. The end result was that differences in the responses were greatly diminished after DA depletion.
纹状体是基底神经节的主要输入结构。主要的谷氨酸能传入纤维来自大脑皮层,与中间棘突投射神经元(MSNs)和中间神经元形成单突触联系。此外:来自丘脑的谷氨酸能传入纤维到纹状体。尽管在轴突投射、多巴胺(DA)受体表达和“直接”和“间接”基底神经节通路的 MSN 之间的兴奋性存在差异,但这些神经元类群在电生理上被认为非常相似。基于使用细菌人工染色体(BAC)转基因小鼠的工作,本文表明,在表达 D1-和 D2-受体的 MSN(D1-和 D2-MSNs)中的皮质纹状体反应有很大的不同,从而建立了一种易于区分它们的电生理特征。在 BAC 小鼠中的实验使我们能够以高概率(P > 0.9)预测,在大鼠或非 BAC 小鼠中,记录的神经元是来自大鼠还是小鼠,是 P 物质或脑啡肽(ENK)免疫反应性。D1-MSNs 中的反应持续时间更长,诱发更多的动作电位,而 D2-MSNs 中的反应则更短暂,并表现出内在的自再生反应。这些差异的一个主要原因是内在特性与每种反应中的抑制贡献的相互作用。在 D2-MSNs 中,抑制总是抑制皮质纹状体去极化,而在 D1-MSNs 中,尽管抑制早期放电,但抑制有助于维持长时间的去极化。在 6-羟基多巴胺(6-OHDA)损伤动物的纹状体 DA 耗竭后,皮质纹状体反应发生了巨大变化:物质 P(SP)+ MSNs 的反应减少,而 ENK+ MSNs 的反应增强。最终结果是,DA 耗竭后,反应差异大大减小。