Suppr超能文献

基于有效连接图谱的蛋白质结构随机重建

Stochastic reconstruction of protein structures from effective connectivity profiles.

作者信息

Wolff Katrin, Vendruscolo Michele, Porto Markus

机构信息

Institut für Festkörperphysik, Technische Universität Darmstadt, Hochschulstrasse 6, 64289 Darmstadt, Germany.

出版信息

PMC Biophys. 2008 Nov 26;1(1):5. doi: 10.1186/1757-5036-1-5.

Abstract

We discuss a stochastic approach for reconstructing the native structures of proteins from the knowledge of the "effective connectivity", which is a one-dimensional structural profile constructed as a linear combination of the eigenvectors of the contact map of the target structure. The structural profile is used to bias a search of the conformational space towards the target structure in a Monte Carlo scheme operating on a Calpha-chain of uniform, finite thickness. Structure information thus enters the folding dynamics via the effective connectivity, but the interaction is not restricted to pairs of amino acids that form native contacts, resulting in a free energy landscape which does not rely on the assumption of minimal frustration. Moreover, effective connectivity vectors can be predicted more readily from the amino acid sequence of proteins than the corresponding contact maps, thus suggesting that the stochastic protocol presented here could be effectively combined with other current methods for predicting native structures. PACS codes: 87.14.Ee.

摘要

我们讨论了一种随机方法,该方法可根据“有效连通性”知识重建蛋白质的天然结构。有效连通性是一种一维结构轮廓,它是作为目标结构接触图特征向量的线性组合构建而成的。在对具有均匀有限厚度的α-链进行的蒙特卡罗方案中,该结构轮廓用于使构象空间的搜索偏向目标结构。结构信息因此通过有效连通性进入折叠动力学,但这种相互作用并不局限于形成天然接触的氨基酸对,从而产生了一种不依赖于最小受挫假设的自由能景观。此外,与相应的接触图相比,有效连通性向量可以更容易地从蛋白质的氨基酸序列中预测出来,因此表明这里提出的随机协议可以与其他当前预测天然结构的方法有效地结合起来。物理和天文学分类代码:87.14.Ee。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f39e/2666633/8cf1ec6197f9/1757-5036-1-5-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验