Suppr超能文献

蛋白质进化中相对溶剂可及性与进化速率的关系。

The relationship between relative solvent accessibility and evolutionary rate in protein evolution.

机构信息

Center for Computational Biology and Bioinformatics, Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712, USA.

出版信息

Genetics. 2011 Jun;188(2):479-88. doi: 10.1534/genetics.111.128025. Epub 2011 Apr 5.

Abstract

Recent work with Saccharomyces cerevisiae shows a linear relationship between the evolutionary rate of sites and the relative solvent accessibility (RSA) of the corresponding residues in the folded protein. Here, we aim to develop a mathematical model that can reproduce this linear relationship. We first demonstrate that two models that both seem reasonable choices (a simple model in which selection strength correlates with RSA and a more complex model based on RSA-dependent amino acid distributions) fail to reproduce the observed relationship. We then develop a model on the basis of observed site-specific amino acid distributions and show that this model behaves appropriately. We conclude that evolutionary rates are directly linked to the distribution of amino acids at individual sites. Because of this link, any future insight into the biophysical mechanisms that determine amino acid distributions will improve our understanding of evolutionary rates.

摘要

最近对酿酒酵母的研究表明,折叠蛋白质中对应残基的进化速率与相对溶剂可及性(RSA)之间存在线性关系。在这里,我们旨在开发一种可以再现这种线性关系的数学模型。我们首先证明,两个似乎都是合理选择的模型(一个简单的模型,其中选择强度与 RSA 相关,另一个更复杂的基于 RSA 相关的氨基酸分布的模型)都无法再现观察到的关系。然后,我们基于观察到的特定位置的氨基酸分布开发了一个模型,并表明该模型表现良好。我们得出结论,进化速率与单个位置的氨基酸分布直接相关。由于这种联系,任何对决定氨基酸分布的生物物理机制的未来见解都将提高我们对进化速率的理解。

相似文献

1
The relationship between relative solvent accessibility and evolutionary rate in protein evolution.
Genetics. 2011 Jun;188(2):479-88. doi: 10.1534/genetics.111.128025. Epub 2011 Apr 5.
2
Modeling coding-sequence evolution within the context of residue solvent accessibility.
BMC Evol Biol. 2012 Sep 12;12:179. doi: 10.1186/1471-2148-12-179.
3
A hydrophobic spine stabilizes a surface-exposed α-helix according to analysis of the solvent-accessible surface area.
BMC Bioinformatics. 2016 Dec 22;17(Suppl 19):503. doi: 10.1186/s12859-016-1368-z.
4
Proportion of solvent-exposed amino acids in a protein and rate of protein evolution.
Mol Biol Evol. 2007 Apr;24(4):1005-11. doi: 10.1093/molbev/msm019. Epub 2007 Jan 29.
5
Structural determinants of protein evolution are context-sensitive at the residue level.
Mol Biol Evol. 2009 Oct;26(10):2387-95. doi: 10.1093/molbev/msp146. Epub 2009 Jul 13.
8
Do amino acid biosynthetic costs constrain protein evolution in Saccharomyces cerevisiae?
J Mol Evol. 2008 Dec;67(6):621-30. doi: 10.1007/s00239-008-9162-9.
10
Cellular crowding imposes global constraints on the chemistry and evolution of proteomes.
Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20461-6. doi: 10.1073/pnas.1209312109. Epub 2012 Nov 26.

引用本文的文献

1
Tubulin sequence divergence is associated with the use of distinct microtubule regulators.
Curr Biol. 2025 Jan 20;35(2):233-248.e8. doi: 10.1016/j.cub.2024.11.022. Epub 2024 Dec 17.
2
Selection Across the Three-Dimensional Structure of Venom Proteins from North American Scolopendromorph Centipedes.
J Mol Evol. 2024 Aug;92(4):505-524. doi: 10.1007/s00239-024-10191-y. Epub 2024 Jul 18.
3
Improved prediction of site-rates from structure with averaging across homologs.
Protein Sci. 2024 Jul;33(7):e5086. doi: 10.1002/pro.5086.
4
Substitution Models of Protein Evolution with Selection on Enzymatic Activity.
Mol Biol Evol. 2024 Feb 1;41(2). doi: 10.1093/molbev/msae026.
5
6
Evolution is not Uniform Along Coding Sequences.
Mol Biol Evol. 2023 Mar 4;40(3). doi: 10.1093/molbev/msad042.
7
MUG: A mutation overview of GPCR subfamily A17 receptors.
Comput Struct Biotechnol J. 2022 Dec 21;21:586-600. doi: 10.1016/j.csbj.2022.12.031. eCollection 2023.
8
Evolution of tunnels in α/β-hydrolase fold proteins-What can we learn from studying epoxide hydrolases?
PLoS Comput Biol. 2022 May 17;18(5):e1010119. doi: 10.1371/journal.pcbi.1010119. eCollection 2022 May.
10
Structure-function relationship between soluble epoxide hydrolases structure and their tunnel network.
Comput Struct Biotechnol J. 2021 Dec 13;20:193-205. doi: 10.1016/j.csbj.2021.10.042. eCollection 2022.

本文引用的文献

1
Translationally optimal codons associate with aggregation-prone sites in proteins.
Proteomics. 2010 Dec;10(23):4163-71. doi: 10.1002/pmic.201000229.
3
Signatures of protein biophysics in coding sequence evolution.
Curr Opin Struct Biol. 2010 Jun;20(3):385-9. doi: 10.1016/j.sbi.2010.03.004. Epub 2010 Apr 13.
4
Universal distribution of protein evolution rates as a consequence of protein folding physics.
Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):2983-8. doi: 10.1073/pnas.0910445107. Epub 2010 Jan 26.
6
Structural determinants of protein evolution are context-sensitive at the residue level.
Mol Biol Evol. 2009 Oct;26(10):2387-95. doi: 10.1093/molbev/msp146. Epub 2009 Jul 13.
7
Inferring stabilizing mutations from protein phylogenies: application to influenza hemagglutinin.
PLoS Comput Biol. 2009 Apr;5(4):e1000349. doi: 10.1371/journal.pcbi.1000349. Epub 2009 Apr 17.
8
Stochastic reconstruction of protein structures from effective connectivity profiles.
PMC Biophys. 2008 Nov 26;1(1):5. doi: 10.1186/1757-5036-1-5.
9
Translationally optimal codons associate with structurally sensitive sites in proteins.
Mol Biol Evol. 2009 Jul;26(7):1571-80. doi: 10.1093/molbev/msp070. Epub 2009 Apr 6.
10
Solvent exposure imparts similar selective pressures across a range of yeast proteins.
Mol Biol Evol. 2009 May;26(5):1155-61. doi: 10.1093/molbev/msp031. Epub 2009 Feb 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验