Suppr超能文献

提取复杂加权网络的多尺度骨干

Extracting the multiscale backbone of complex weighted networks.

作者信息

Serrano M Angeles, Boguñá Marián, Vespignani Alessandro

机构信息

Instituto de Física Interdisciplinar y Sistemas Complejos, Consejo Superior de Investigaciones Científicas-Universitat Illes Balears, E-07122 Palma de Mallorca, Spain.

出版信息

Proc Natl Acad Sci U S A. 2009 Apr 21;106(16):6483-8. doi: 10.1073/pnas.0808904106. Epub 2009 Apr 8.

Abstract

A large number of complex systems find a natural abstraction in the form of weighted networks whose nodes represent the elements of the system and the weighted edges identify the presence of an interaction and its relative strength. In recent years, the study of an increasing number of large-scale networks has highlighted the statistical heterogeneity of their interaction pattern, with degree and weight distributions that vary over many orders of magnitude. These features, along with the large number of elements and links, make the extraction of the truly relevant connections forming the network's backbone a very challenging problem. More specifically, coarse-graining approaches and filtering techniques come into conflict with the multiscale nature of large-scale systems. Here, we define a filtering method that offers a practical procedure to extract the relevant connection backbone in complex multiscale networks, preserving the edges that represent statistically significant deviations with respect to a null model for the local assignment of weights to edges. An important aspect of the method is that it does not belittle small-scale interactions and operates at all scales defined by the weight distribution. We apply our method to real-world network instances and compare the obtained results with alternative backbone extraction techniques.

摘要

大量复杂系统可以自然地抽象为加权网络的形式,其中节点代表系统的元素,加权边则标识相互作用的存在及其相对强度。近年来,对越来越多的大规模网络的研究突出了其相互作用模式的统计异质性,其度分布和权重分布在多个数量级上变化。这些特征,连同大量的元素和链接,使得提取构成网络主干的真正相关连接成为一个极具挑战性的问题。更具体地说,粗粒化方法和过滤技术与大规模系统的多尺度性质相冲突。在这里,我们定义了一种过滤方法,该方法提供了一种实用的程序来提取复杂多尺度网络中的相关连接主干,保留那些相对于边权重的局部分配的零模型表示统计上显著偏差的边。该方法的一个重要方面是它不会轻视小规模相互作用,并且在由权重分布定义的所有尺度上运行。我们将我们的方法应用于实际网络实例,并将获得的结果与其他主干提取技术进行比较。

相似文献

1
Extracting the multiscale backbone of complex weighted networks.提取复杂加权网络的多尺度骨干
Proc Natl Acad Sci U S A. 2009 Apr 21;106(16):6483-8. doi: 10.1073/pnas.0808904106. Epub 2009 Apr 8.
4
Information filtering in complex weighted networks.复杂加权网络中的信息过滤
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Apr;83(4 Pt 2):046101. doi: 10.1103/PhysRevE.83.046101. Epub 2011 Apr 1.
5
Extracting the globally and locally adaptive backbone of complex networks.提取复杂网络的全局和局部自适应主干。
PLoS One. 2014 Jun 17;9(6):e100428. doi: 10.1371/journal.pone.0100428. eCollection 2014.
7
Quantifying the connectivity of a network: the network correlation function method.量化网络的连通性:网络相关函数法。
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Oct;80(4 Pt 2):046104. doi: 10.1103/PhysRevE.80.046104. Epub 2009 Oct 7.
9
Spectral coarse graining and synchronization in oscillator networks.振荡器网络中的频谱粗粒化与同步
Phys Rev Lett. 2008 May 2;100(17):174104. doi: 10.1103/PhysRevLett.100.174104.
10
Biological network comparison using graphlet degree distribution.使用图let度分布进行生物网络比较。
Bioinformatics. 2007 Jan 15;23(2):e177-83. doi: 10.1093/bioinformatics/btl301.

引用本文的文献

6
Economical representation of spatial networks.空间网络的经济表示
PNAS Nexus. 2025 Jun 18;4(7):pgaf203. doi: 10.1093/pnasnexus/pgaf203. eCollection 2025 Jul.
9
Synergistic small worlds that drive technological sophistication.推动技术复杂性的协同小世界。
PNAS Nexus. 2025 Mar 26;4(4):pgaf102. doi: 10.1093/pnasnexus/pgaf102. eCollection 2025 Apr.

本文引用的文献

1
Spectral coarse graining of complex networks.复杂网络的频谱粗粒化
Phys Rev Lett. 2007 Jul 20;99(3):038701. doi: 10.1103/PhysRevLett.99.038701. Epub 2007 Jul 19.
2
Transport in weighted networks: partition into superhighways and roads.加权网络中的传输:划分为超级高速公路和道路。
Phys Rev Lett. 2006 Apr 14;96(14):148702. doi: 10.1103/PhysRevLett.96.148702. Epub 2006 Apr 13.
3
Scale-free brain functional networks.无标度脑功能网络。
Phys Rev Lett. 2005 Jan 14;94(1):018102. doi: 10.1103/PhysRevLett.94.018102. Epub 2005 Jan 6.
4
Coarse-graining and self-dissimilarity of complex networks.复杂网络的粗粒化与自相似性
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Jan;71(1 Pt 2):016127. doi: 10.1103/PhysRevE.71.016127. Epub 2005 Jan 21.
5
Self-similarity of complex networks.复杂网络的自相似性。
Nature. 2005 Jan 27;433(7024):392-5. doi: 10.1038/nature03248.
6
Geographical coarse graining of complex networks.复杂网络的地理粗粒化
Phys Rev Lett. 2004 Oct 15;93(16):168701. doi: 10.1103/PhysRevLett.93.168701. Epub 2004 Oct 13.
7
The architecture of complex weighted networks.复杂加权网络的架构
Proc Natl Acad Sci U S A. 2004 Mar 16;101(11):3747-52. doi: 10.1073/pnas.0400087101. Epub 2004 Mar 8.
9
Emergence of scaling in random networks.随机网络中幂律分布的出现。
Science. 1999 Oct 15;286(5439):509-12. doi: 10.1126/science.286.5439.509.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验