Suppr超能文献

人类顶叶岛盖皮质的结构与功能不对称性。

Structural and functional asymmetry in the human parietal opercular cortex.

作者信息

Jung Patrick, Baumgärtner Ulf, Stoeter Peter, Treede Rolf-Detlef

机构信息

Department of Neurology, Johann Wolfgang Goethe University, 60528 Frankfurt am Main, Germany.

出版信息

J Neurophysiol. 2009 Jun;101(6):3246-57. doi: 10.1152/jn.91264.2008. Epub 2009 Apr 8.

Abstract

In this combined electroencephalographic and magnetic resonance imaging (MRI) study, the asymmetry of functional and structural measures in the human parietal operculum (PO) were investigated. Median nerve somatosensory evoked potential recordings showed maximum scalp potentials over contralateral (N80, N110) and ipsilateral (N100, N130) temporal electrode positions. In accordance, MRI-coregistered source analysis revealed two electrical sources in the contralateral (N80, N110) and two in the ipsilateral (N100, N130) PO. The dipole orientations of the contra- and ipsilateral sources with earlier peak activation, N80 and N100, were more tangential than those of the later peaking N110 and N130 sources. The most prominent contralateral N110 source exhibited pronounced left lateralized dipole strengths in the 80- to 120-ms latency range, in contrast to symmetrical N80 and ipsilateral source responses. The asymmetry of the N110 source activity explained both the asymmetry of N110 and N100 scalp potentials. Morphometric analysis demonstrated no interhemispheric differences in the sizes of the anterior PO (aPO), containing the cytoarchitectonic areas OP3 and OP4, but left lateralized sizes of the posterior PO (pPO), which encompasses the anatomically defined areas OP1 and OP2. The N110 source was located in the pPO and its asymmetry was significantly correlated with the structural pPO asymmetry but not with handedness and auditory lateralization. Thus both structural and functional asymmetries exist in the human PO and they are closely related to each other but not to measures of brain asymmetry in other functional systems, i.e., auditory lateralization and handedness.

摘要

在这项脑电图与磁共振成像(MRI)相结合的研究中,对人类顶叶岛盖(PO)功能和结构测量的不对称性进行了调查。正中神经体感诱发电位记录显示,对侧(N80、N110)和同侧(N100、N130)颞部电极位置处头皮电位最大。相应地,MRI配准源分析显示,对侧PO有两个电信号源(N80、N110),同侧PO有两个电信号源(N100、N130)。激活峰值较早的对侧和同侧信号源(N80和N100)的偶极方向比激活峰值较晚的N110和N130信号源更趋于切线方向。最突出的对侧N110信号源在80至120毫秒潜伏期范围内表现出明显的左侧偶极强度优势,这与对称的N80和同侧信号源反应形成对比。N110信号源活动的不对称性解释了N110和N100头皮电位的不对称性。形态学分析表明,包含细胞构筑区OP3和OP4的前PO(aPO)大小在半球间无差异,但包含解剖学定义区域OP1和OP2的后PO(pPO)大小存在左侧优势。N110信号源位于pPO,其不对称性与pPO结构不对称性显著相关,但与利手和听觉偏侧化无关。因此,人类PO中存在结构和功能不对称性,它们彼此密切相关,但与其他功能系统中的脑不对称性测量指标(即听觉偏侧化和利手)无关。

相似文献

1
Structural and functional asymmetry in the human parietal opercular cortex.
J Neurophysiol. 2009 Jun;101(6):3246-57. doi: 10.1152/jn.91264.2008. Epub 2009 Apr 8.
2
Hemispheric asymmetry of hand representation in human primary somatosensory cortex and handedness.
Clin Neurophysiol. 2008 Nov;119(11):2579-86. doi: 10.1016/j.clinph.2008.04.300. Epub 2008 Sep 10.
3
EEG source analysis and fMRI reveal two electrical sources in the fronto-parietal operculum during subepidermal finger stimulation.
Neuroimage. 2005 Mar;25(1):8-20. doi: 10.1016/j.neuroimage.2004.10.025. Epub 2005 Jan 5.
4
Characteristics of the human contra- versus ipsilateral SII cortex.
Clin Neurophysiol. 2000 May;111(5):894-900. doi: 10.1016/s1388-2457(99)00319-3.
7
Asymmetry in the human primary somatosensory cortex and handedness.
Neuroimage. 2003 Jul;19(3):913-23. doi: 10.1016/s1053-8119(03)00164-2.
8
Late auditory evoked potentials asymmetry revisited.
Clin Neurophysiol. 2007 Jun;118(6):1274-85. doi: 10.1016/j.clinph.2007.03.012. Epub 2007 Apr 25.
10
Movement-related changes in cortical excitability: a steady-state SEP approach.
Brain Res. 2008 Dec 9;1244:113-20. doi: 10.1016/j.brainres.2008.09.048. Epub 2008 Sep 25.

引用本文的文献

1
Cerebral processing of sharp mechanical pain measured with arterial spin labeling.
Brain Behav. 2022 Jan;12(1):e2442. doi: 10.1002/brb3.2442. Epub 2021 Dec 8.
2
Cortical Representation of Tactile Stickiness Evoked by Skin Contact and Glove Contact.
Front Integr Neurosci. 2020 Apr 9;14:19. doi: 10.3389/fnint.2020.00019. eCollection 2020.
3
Asymmetric Functional Connectivity of the Contra- and Ipsilateral Secondary Somatosensory Cortex during Tactile Object Recognition.
Front Hum Neurosci. 2018 Jan 24;11:662. doi: 10.3389/fnhum.2017.00662. eCollection 2017.
4
Lateral differences in Ki-67 in breast cancer.
Mol Clin Oncol. 2016 Jun;4(6):1041-1044. doi: 10.3892/mco.2016.845. Epub 2016 Apr 4.
5
Hemispheric Asymmetry of Human Brain Anatomical Network Revealed by Diffusion Tensor Tractography.
Biomed Res Int. 2015;2015:908917. doi: 10.1155/2015/908917. Epub 2015 Oct 11.
6
Caloric vestibular stimulation modulates nociceptive evoked potentials.
Exp Brain Res. 2015 Dec;233(12):3393-401. doi: 10.1007/s00221-015-4412-8. Epub 2015 Aug 18.
7
Vestibular-somatosensory interactions: effects of passive whole-body rotation on somatosensory detection.
PLoS One. 2014 Jan 21;9(1):e86379. doi: 10.1371/journal.pone.0086379. eCollection 2014.
8
Reappraisal of field dynamics of motor cortex during self-paced finger movements.
Brain Behav. 2013 Nov;3(6):747-62. doi: 10.1002/brb3.186. Epub 2013 Oct 17.
9
Caloric vestibular stimulation: interaction between somatosensory system and vestibular apparatus.
Front Integr Neurosci. 2013 Sep 17;7:66. doi: 10.3389/fnint.2013.00066. eCollection 2013.
10
How the vestibular system interacts with somatosensory perception: a sham-controlled study with galvanic vestibular stimulation.
Neurosci Lett. 2013 Aug 29;550(100):35-40. doi: 10.1016/j.neulet.2013.06.046. Epub 2013 Jul 1.

本文引用的文献

1
Hemispheric asymmetry of hand representation in human primary somatosensory cortex and handedness.
Clin Neurophysiol. 2008 Nov;119(11):2579-86. doi: 10.1016/j.clinph.2008.04.300. Epub 2008 Sep 10.
2
Functional lateralization of face, hand, and trunk representation in anatomically defined human somatosensory areas.
Cereb Cortex. 2008 Dec;18(12):2820-30. doi: 10.1093/cercor/bhn039. Epub 2008 Mar 27.
3
Somatosensory processes subserving perception and action.
Behav Brain Sci. 2007 Apr;30(2):189-201; discussion 201-39. doi: 10.1017/S0140525X07001392.
5
Sensory neuroscience: from skin to object in the somatosensory cortex.
Curr Biol. 2006 Oct 24;16(20):R884-6. doi: 10.1016/j.cub.2006.09.024.
6
The somatotopic organization of cytoarchitectonic areas on the human parietal operculum.
Cereb Cortex. 2007 Aug;17(8):1800-11. doi: 10.1093/cercor/bhl090. Epub 2006 Oct 10.
7
Differences of the ipsilateral silent period in small hand muscles.
Muscle Nerve. 2006 Oct;34(4):431-6. doi: 10.1002/mus.20604.
9
The human parietal operculum. I. Cytoarchitectonic mapping of subdivisions.
Cereb Cortex. 2006 Feb;16(2):254-67. doi: 10.1093/cercor/bhi105. Epub 2005 May 11.
10
The human parietal operculum. II. Stereotaxic maps and correlation with functional imaging results.
Cereb Cortex. 2006 Feb;16(2):268-79. doi: 10.1093/cercor/bhi106. Epub 2005 May 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验