Suppr超能文献

自我节奏手指运动期间运动皮层的现场动力学再评价。

Reappraisal of field dynamics of motor cortex during self-paced finger movements.

机构信息

Department of Integrative Physiology, National Institute for Physiological Sciences Okazaki, 444-8585, Japan ; Department of Psychology, Kinjo Gakuin University Omori 2-1723 Moriyama, Nagoya, 463-8521, Japan.

Department of Integrative Physiology, National Institute for Physiological Sciences Okazaki, 444-8585, Japan.

出版信息

Brain Behav. 2013 Nov;3(6):747-62. doi: 10.1002/brb3.186. Epub 2013 Oct 17.

Abstract

BACKGROUND

The exact origin of neuronal responses in the human sensorimotor cortex subserving the generation of voluntary movements remains unclear, despite the presence of characteristic but robust waveforms in the records of electroencephalography or magnetoencephalography (MEG).

AIMS

To clarify this fundamental and important problem, we analyzed MEG in more detail using a multidipole model during pulsatile extension of the index finger, and made some important new findings.

RESULTS

Movement-related cerebral fields (MRCFs) were confirmed over the sensorimotor region contralateral to the movement, consisting of a temporal succession of the first premovement component termed motor field, followed by two or three postmovement components termed movement evoked fields. A source analysis was applied to separately model each of these field components. Equivalent current diploes of all components of MRCFs were estimated to be located in the same precentral motor region, and did not differ with respect to their locations and orientations. The somatosensory evoked fields following median nerve stimulation were used to validate these findings through comparisons of the location and orientation of composite sources with those specified in MRCFs. The sources for the earliest components were evoked in Brodmann's area 3b located lateral to the sources of MRCFs, and those for subsequent components in area 5 and the secondary somatosensory area were located posterior to and inferior to the sources of MRCFs, respectively. Another component peaking at a comparable latency with the area 3b source was identified in the precentral motor region where all sources of MRCFs were located.

CONCLUSION

These results suggest that the MRCF waveform reflects a series of responses originating in the precentral motor area.

摘要

背景

尽管脑电图或脑磁图(MEG)记录中存在特征性但很强的波形,但人类运动皮层中产生随意运动的神经元反应的确切起源仍不清楚。

目的

为了澄清这个基本而重要的问题,我们在脉冲式伸展食指期间使用多偶极子模型更详细地分析了 MEG,并取得了一些重要的新发现。

结果

在运动对侧的感觉运动区域确认了与运动相关的脑场(MRCF),其由运动前成分(称为运动场)的时间顺序组成,随后是两个或三个运动后成分(称为运动诱发场)。对每个场成分分别进行源分析。所有 MRCF 场成分的等效电流偶极子都估计位于相同的中央前运动区,并且其位置和方向没有差异。通过比较复合源与 MRCF 中指定的源的位置和方向,使用正中神经刺激后的体感诱发电位来验证这些发现。最早成分的源位于 MRCF 源外侧的布罗德曼 3b 区,随后的成分的源位于 MRCF 源的后部和下部的 5 区和次级体感区。在所有 MRCF 源所在的中央前运动区中,还确定了一个与 3b 区源具有可比潜伏期的峰值的另一个成分。

结论

这些结果表明,MRCF 波形反映了起源于中央前运动区的一系列反应。

相似文献

1
Reappraisal of field dynamics of motor cortex during self-paced finger movements.
Brain Behav. 2013 Nov;3(6):747-62. doi: 10.1002/brb3.186. Epub 2013 Oct 17.
2
Magnetoencephalographic representation of the sensorimotor hand area in cases of intracerebral tumour.
J Neurol Neurosurg Psychiatry. 2003 Dec;74(12):1649-54. doi: 10.1136/jnnp.74.12.1649.
5
Cortical activation in area 3b related to finger movement: an MEG study.
Neuroreport. 2004 Jan 19;15(1):57-62. doi: 10.1097/00001756-200401190-00012.
6
Source analysis of the magnetic field evoked during self-paced finger movements.
Neurol Res. 2008 Apr;30(3):239-43. doi: 10.1179/016164107X230801. Epub 2007 Sep 10.
7
High-frequency transcutaneous electrical nerve stimulation (TENS) differentially modulates sensorimotor cortices: an MEG study.
Clin Neurophysiol. 2010 Jun;121(6):939-44. doi: 10.1016/j.clinph.2010.01.011. Epub 2010 Feb 10.
8
Muscle-afferent projection to the sensorimotor cortex after voluntary movement and motor-point stimulation: an MEG study.
Clin Neurophysiol. 2011 Mar;122(3):605-610. doi: 10.1016/j.clinph.2010.07.027. Epub 2010 Sep 18.
9
Neuromagnetic activation following active and passive finger movements.
Brain Behav. 2013 Mar;3(2):178-92. doi: 10.1002/brb3.126. Epub 2013 Feb 17.
10
Cortical neuromagnetic activation accompanying two types of voluntary finger extension.
Brain Res. 2006 Dec 6;1123(1):112-8. doi: 10.1016/j.brainres.2006.09.033. Epub 2006 Oct 12.

引用本文的文献

本文引用的文献

1
Neuromagnetic activation following active and passive finger movements.
Brain Behav. 2013 Mar;3(2):178-92. doi: 10.1002/brb3.126. Epub 2013 Feb 17.
2
Cortical representation of pain in primary sensory-motor areas (S1/M1)--a study using intracortical recordings in humans.
Hum Brain Mapp. 2013 Oct;34(10):2655-68. doi: 10.1002/hbm.22097. Epub 2012 Jun 15.
3
Conflict caused by visual feedback modulates activation in somatosensory areas during movement execution.
Neuroimage. 2012 Jan 16;59(2):1501-7. doi: 10.1016/j.neuroimage.2011.08.024. Epub 2011 Aug 26.
4
Dipole source analyses of early median nerve SEP components obtained from subdural grid recordings.
J Neurophysiol. 2010 Dec;104(6):3029-41. doi: 10.1152/jn.00116.2010. Epub 2010 Sep 22.
5
Muscle-afferent projection to the sensorimotor cortex after voluntary movement and motor-point stimulation: an MEG study.
Clin Neurophysiol. 2011 Mar;122(3):605-610. doi: 10.1016/j.clinph.2010.07.027. Epub 2010 Sep 18.
7
Sensory responses in motor cortex neurons during precise motor control.
Neurosci Lett. 1977 Aug;5(5):267-72. doi: 10.1016/0304-3940(77)90077-5.
8
Structural and functional asymmetry in the human parietal opercular cortex.
J Neurophysiol. 2009 Jun;101(6):3246-57. doi: 10.1152/jn.91264.2008. Epub 2009 Apr 8.
9
Hemispheric asymmetry of hand representation in human primary somatosensory cortex and handedness.
Clin Neurophysiol. 2008 Nov;119(11):2579-86. doi: 10.1016/j.clinph.2008.04.300. Epub 2008 Sep 10.
10
Cortical neuromagnetic activation accompanying two types of voluntary finger extension.
Brain Res. 2006 Dec 6;1123(1):112-8. doi: 10.1016/j.brainres.2006.09.033. Epub 2006 Oct 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验