Zakharova Maria Yu, Kuznetsov Nikita A, Dubiley Svetlana A, Kozyr Arina V, Fedorova Olga S, Chudakov Dmitry M, Knorre Dmitry G, Shemyakin Igor G, Gabibov Alexander G, Kolesnikov Alexander V
M. M. Shemyakin & Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997.
J Biol Chem. 2009 Jul 3;284(27):17902-13. doi: 10.1074/jbc.M807510200. Epub 2009 Apr 9.
Lethal factor (LF), a zinc-dependent protease of high specificity produced by Bacillus anthracis, is the effector component of the binary toxin that causes death in anthrax. New therapeutics targeting the toxin are required to reduce systemic anthrax-related fatalities. In particular, new insights into the LF catalytic mechanism will be useful for the development of LF inhibitors. We evaluated the minimal length required for formation of bona fide LF substrates using substrate phage display. Phage-based selection yielded a substrate that is cleaved seven times more efficiently by LF than the peptide targeted in the protein kinase MKK6. Site-directed mutagenesis within the metal-binding site in the LF active center and within phage-selected substrates revealed a complex pattern of LF-substrate interactions. The elementary steps of LF-mediated proteolysis were resolved by the stopped-flow technique. Pre-steady-state kinetics of LF proteolysis followed a four-step mechanism as follows: initial substrate binding, rearrangement of the enzyme-substrate complex, a rate-limiting cleavage step, and product release. Examination of LF interactions with metal ions revealed an unexpected activation of the protease by Ca(2+) and Mn(2+). Based on the available structural and kinetic data, we propose a model for LF-substrate interaction. Resolution of the kinetic and structural parameters governing LF activity may be exploited to design new LF inhibitors.
致死因子(LF)是炭疽芽孢杆菌产生的一种高特异性锌依赖性蛋白酶,是导致炭疽死亡的二元毒素的效应成分。需要开发针对该毒素的新疗法以降低全身性炭疽相关的死亡率。特别是,对LF催化机制的新见解将有助于开发LF抑制剂。我们使用底物噬菌体展示评估了形成真正LF底物所需的最短长度。基于噬菌体的筛选产生了一种底物,LF对其切割效率比蛋白激酶MKK6靶向的肽高7倍。在LF活性中心的金属结合位点内和噬菌体选择的底物内进行定点诱变,揭示了LF与底物相互作用的复杂模式。通过停流技术解析了LF介导的蛋白水解的基本步骤。LF蛋白水解的预稳态动力学遵循以下四步机制:初始底物结合、酶-底物复合物重排、限速切割步骤和产物释放。对LF与金属离子相互作用的研究揭示了Ca(2+)和Mn(2+)对蛋白酶的意外激活。基于现有的结构和动力学数据,我们提出了一个LF-底物相互作用模型。控制LF活性的动力学和结构参数的解析可用于设计新的LF抑制剂。