Yuli I, Lelkes P I
Department of Membrane Research and Biophysics, Weizmann Institute of Science, Rehovot, Israel.
Eur J Biochem. 1991 Oct 15;201(2):421-30. doi: 10.1111/j.1432-1033.1991.tb16300.x.
Human polymorphonuclear leukocytes (PMN) hydrolyze the synthetic chemoattractant N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMet-Leu-Phe) at nanomolar concentrations in an autocatalytic-like manner that deviates from classical Michaelis-Menten kinetics [Yuli, I. & Snyderman, R. (1986) J. Biol. Chem. 261, 4902-4908]. By using inhibitors of distinct classes of endoproteases, this particular fMet-Leu-Phe degradation was attributed exclusively to an exoplasmic metalloendoprotease that matches the ubiquitous neutral endopeptidase (NEP). Membrane-bound NEP hydrolyzes non-chemotactic substrates according to a classic Michaelis-Menten mechanism. By competitive inhibition with non-chemotactic substrates, fMet-Leu-Phe was found to interact with membrane NEP through a single active site, in a non-cooperative mode with an apparent Km in the order of 1 mM. The discrepancy between the ordinary hydrolysis of the micromolar and millimolar concentrations of fMet-Leu-Phe, reported by others, and the particular degradation of the nanomolar fMet-Leu-Phe, could not be accounted for by any coherent correlation between NEP activity/inhibition and modulation of fMet-Leu-Phe binding to its receptor, and/or induction of fMet-Leu-Phe-receptor-mediated inflammatory responses. Based on these and previously reported results, a novel model is proposed in which the fMet-Leu-Phe-induced inflammatory stimulation of PMN involves both NEP and the fMet-Leu-Phe receptor. By this model, NEP and the fMet-Leu-Phe receptor are distinct membrane entities which can form dynamic binary and tertiary complexes; thus accounting for the unusual kinetic features of fMet-Leu-Phe degradation, as well as the two receptor states. The complex of NEP and the fMet-Leu-Phe receptor might be conceived as a chemotactic-perception mechanism that combines the high affinity of the receptor and the rapid turnover of NEP.
人多形核白细胞(PMN)以类似自催化的方式在纳摩尔浓度下水解合成趋化因子N-甲酰基-L-蛋氨酰-L-亮氨酰-L-苯丙氨酸(fMet-Leu-Phe),这种方式偏离了经典的米氏动力学[尤利,I. & 斯奈德曼,R.(1986年)《生物化学杂志》261,4902 - 4908]。通过使用不同类别的内肽酶抑制剂,这种特定的fMet-Leu-Phe降解完全归因于一种外质金属内肽酶,它与普遍存在的中性内肽酶(NEP)相匹配。膜结合的NEP根据经典的米氏机制水解非趋化性底物。通过与非趋化性底物的竞争性抑制,发现fMet-Leu-Phe通过单个活性位点与膜NEP相互作用,以非协同模式,表观Km约为1 mM。其他人报道的微摩尔和毫摩尔浓度的fMet-Leu-Phe的普通水解与纳摩尔fMet-Leu-Phe的特定降解之间的差异,无法通过NEP活性/抑制与fMet-Leu-Phe与其受体结合的调节和/或fMet-Leu-Phe受体介导的炎症反应诱导之间的任何连贯相关性来解释。基于这些以及先前报道的结果,提出了一个新模型,其中fMet-Leu-Phe诱导的PMN炎症刺激涉及NEP和fMet-Leu-Phe受体。根据这个模型,NEP和fMet-Leu-Phe受体是不同的膜实体,它们可以形成动态的二元和三元复合物;从而解释了fMet-Leu-Phe降解的异常动力学特征以及两种受体状态。NEP和fMet-Leu-Phe受体的复合物可能被认为是一种趋化感知机制,它结合了受体的高亲和力和NEP的快速周转。