Suppr超能文献

肿瘤血管生成的体内微绘图与亚细胞成像:转化性血管生成研究的新型平台

In vivo microcartography and subcellular imaging of tumor angiogenesis: a novel platform for translational angiogenesis research.

作者信息

Dunphy Mark P S, Entenberg David, Toledo-Crow Ricardo, Larson Steven M

机构信息

Sloan Kettering Institute for Cancer Research, 418 East 68th Street, New York, NY 10065, USA.

出版信息

Microvasc Res. 2009 Jun;78(1):51-6. doi: 10.1016/j.mvr.2009.03.008. Epub 2009 Apr 9.

Abstract

PURPOSE

To eliminate the variable of tumor heterogeneity from a novel in vivo model of tumor angiogenesis.

EXPERIMENTAL DESIGN

We developed a method to navigate tumor neovasculature in a living tissue microenvironment, enabling relocation of a cell- or microregion-of-interest, for serial in vivo imaging. Orthotopic melanoma was grown, in immunocompetent Tie2GFP mice. Intravital multiphoton fluorescence and confocal reflectance imaging was performed, on a custom microscope with motorized stage and coordinate navigation software. A point within a Tie2GFP+ microvessel was selected for relocation. Custom software predicted target coordinates based upon reference points (tissue-embedded polystyrene beads) and baseline target coordinates. Mice were removed from the stage to make previously-obtained target coordinates invalid in subsequent imaging.

RESULTS

Coordinate predictions always relocated target points, in vivo, to within 10-200 microm (within a single 40x field-of-view). The model system provided a virtual living histology of tumor neovascularization and microenvironment, with subcellular spatial resolution and hemodynamic information.

CONCLUSIONS

The navigation procedure, termed in vivo microcartography, permits control of tissue heterogeneity, as a variable. Tie2 may be the best reporter gene identified, to-date, for intravital microscopy of tumor angiogenesis. This novel model system should strengthen intravital microscopy in its historical role as a vital tool in oncology, angiogenesis research, and angiotherapeutic drug development.

摘要

目的

从一种新型的肿瘤血管生成体内模型中消除肿瘤异质性变量。

实验设计

我们开发了一种方法,可在活组织微环境中引导肿瘤新血管生成,从而能够重新定位感兴趣的细胞或微区域,以进行连续体内成像。将原位黑色素瘤接种到具有免疫活性的Tie2GFP小鼠体内。在配备电动载物台和坐标导航软件的定制显微镜上进行活体多光子荧光和共聚焦反射成像。选择Tie2GFP +微血管内的一个点进行重新定位。定制软件根据参考点(组织包埋的聚苯乙烯珠)和基线目标坐标预测目标坐标。将小鼠从载物台上移开,使先前获得的目标坐标在后续成像中无效。

结果

坐标预测总能在体内将目标点重新定位到10 - 200微米范围内(在单个40倍视野内)。该模型系统提供了具有亚细胞空间分辨率和血流动力学信息的肿瘤新血管生成和微环境的虚拟活组织学。

结论

这种被称为体内微绘图的导航程序能够控制作为变量的组织异质性。Tie2可能是迄今为止所鉴定出的用于肿瘤血管生成活体显微镜检查的最佳报告基因。这种新型模型系统应能强化活体显微镜检查在肿瘤学、血管生成研究和血管治疗药物开发中作为重要工具的历史作用。

相似文献

2
Simple and Robust Intravital Microscopy Procedures in Hybrid TIE2GFP-BALB/c Transgenic Mice.
Mol Imaging Biol. 2020 Jun;22(3):486-493. doi: 10.1007/s11307-019-01442-2.
3
Structural and functional optical imaging of angiogenesis in animal models.
Methods Enzymol. 2004;386:105-22. doi: 10.1016/S0076-6879(04)86004-X.
5
A transgenic Tie2-GFP athymic mouse model; a tool for vascular biology in xenograft tumors.
Biochem Biophys Res Commun. 2008 Apr 4;368(2):364-7. doi: 10.1016/j.bbrc.2008.01.080. Epub 2008 Jan 29.
7
High-Resolution Intravital Microscopy of Tumor Angiogenesis.
Methods Mol Biol. 2016;1464:115-127. doi: 10.1007/978-1-4939-3999-2_11.
8
Imaging tumor angiogenesis with fluorescent proteins.
APMIS. 2004 Jul-Aug;112(7-8):441-9. doi: 10.1111/j.1600-0463.2004.apm11207-0806.x.
10
Three-dimensional in vivo imaging by a handheld dual-axes confocal microscope.
Opt Express. 2008 May 12;16(10):7224-32. doi: 10.1364/oe.16.007224.

引用本文的文献

1
Stabilized Window for Intravital Imaging of the Murine Pancreas.
J Vis Exp. 2023 Oct 6(200). doi: 10.3791/65498.
2
Intravital imaging to study cancer progression and metastasis.
Nat Rev Cancer. 2023 Jan;23(1):25-42. doi: 10.1038/s41568-022-00527-5. Epub 2022 Nov 16.
3
SWIP-a stabilized window for intravital imaging of the murine pancreas.
Open Biol. 2022 Jun;12(6):210273. doi: 10.1098/rsob.210273. Epub 2022 Jun 15.
4
A Permanent Window for Investigating Cancer Metastasis to the Lung.
J Vis Exp. 2021 Jul 1(173). doi: 10.3791/62761.
5
Intravital Imaging Techniques for Biomedical and Clinical Research.
Cytometry A. 2020 May;97(5):448-457. doi: 10.1002/cyto.a.23963. Epub 2019 Dec 30.
6
A permanent window for the murine lung enables high-resolution imaging of cancer metastasis.
Nat Methods. 2018 Jan;15(1):73-80. doi: 10.1038/nmeth.4511. Epub 2017 Nov 27.
7
8
Non-invasive molecular imaging for preclinical cancer therapeutic development.
Br J Pharmacol. 2013 Jun;169(4):719-35. doi: 10.1111/bph.12155.
10
Real-time intravital imaging of cancer models.
Clin Transl Oncol. 2011 Dec;13(12):848-54. doi: 10.1007/s12094-011-0745-3.

本文引用的文献

1
Computer-supported angiogenesis quantification using image analysis and statistical averaging.
IEEE Trans Inf Technol Biomed. 2008 Sep;12(5):650-7. doi: 10.1109/TITB.2008.926463.
3
Small blood vessel engineering.
Methods Mol Med. 2007;140:183-95. doi: 10.1007/978-1-59745-443-8_11.
4
Whole-body subcellular multicolor imaging of tumor-host interaction and drug response in real time.
Cancer Res. 2007 Jun 1;67(11):5195-200. doi: 10.1158/0008-5472.CAN-06-4590.
5
DCE-MRI biomarkers in the clinical evaluation of antiangiogenic and vascular disrupting agents.
Br J Cancer. 2007 Jan 29;96(2):189-95. doi: 10.1038/sj.bjc.6603515. Epub 2007 Jan 9.
6
Predicting benefit from anti-angiogenic agents in malignancy.
Nat Rev Cancer. 2006 Aug;6(8):626-35. doi: 10.1038/nrc1946. Epub 2006 Jul 13.
7
Angiogenesis as a therapeutic target.
Nature. 2005 Dec 15;438(7070):967-74. doi: 10.1038/nature04483.
8
Optical sectioning microscopy.
Nat Methods. 2005 Dec;2(12):920-31. doi: 10.1038/nmeth815.
10
Nestin-linked green fluorescent protein transgenic nude mouse for imaging human tumor angiogenesis.
Cancer Res. 2005 Jun 15;65(12):5352-7. doi: 10.1158/0008-5472.CAN-05-0821.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验