Logan J David, Ledder Glenn, Wolesensky William
Department of Mathematics, University of Nebraska-Lincoln, Lincoln, NE 68588-0130, USA.
J Theor Biol. 2009 Jul 21;259(2):373-81. doi: 10.1016/j.jtbi.2009.04.001. Epub 2009 Apr 10.
The goal of this work is to formulate a general Holling-type functional, or behavioral, response for continuous physiologically structured populations, where both the predator and the prey have physiological densities and certain rules apply to their interactions. The physiological variable can be, for example, a development stage, weight, age, or a characteristic length. The model leads to a Fredholm integral equation for the functional response, and, when inserted into population balance laws, it produces a coupled system of partial differential-integral equations for the two species, with a nonlocal integral term that arises from rules of interaction in the functional response. The general model is, typically, analytically intractable, but specialization to a structured prey-unstructured predator model leads to some analytic results that reveal interesting and unexpected dynamics caused by the presence of size-dependent handling times in the functional response. In this case, steady-states are shown to exist over long times, similar to the stable age-structure solutions for the McKendick-von Foerster model with exponential growth rates determined by the Euler-Lotka equation. But, for type II responses, there are early transient oscillations in the number of births that bifurcate in a few generations into either the decaying or growing steady-state. The bifurcation parameter is the initial level of prey. This special case is applied to a problem of the biological control of a structured pest population (e.g., aphids) by a predator (e.g., lady beetles).
这项工作的目标是为连续的生理结构种群建立一个通用的Holling型功能反应或行为反应,其中捕食者和猎物都具有生理密度,并且它们的相互作用遵循某些规则。生理变量可以是,例如,发育阶段、体重、年龄或特征长度。该模型导致了一个关于功能反应的Fredholm积分方程,并且,当将其代入种群平衡定律时,它会产生一个针对两个物种的偏微分-积分耦合方程组,其中一个非局部积分项源于功能反应中的相互作用规则。一般模型通常在解析上难以处理,但专门针对结构化猎物-非结构化捕食者模型会得出一些解析结果,这些结果揭示了功能反应中存在与大小相关的处理时间所导致的有趣且意想不到的动态。在这种情况下,长时间内存在稳态,类似于具有由Euler-Lotka方程确定的指数增长率的McKendick-von Foerster模型的稳定年龄结构解。但是,对于II型反应,出生数量会出现早期瞬态振荡,在几代内会分叉为衰减或增长的稳态。分叉参数是猎物的初始水平。这个特殊情况被应用于一个由捕食者(例如瓢虫)对结构化害虫种群(例如蚜虫)进行生物控制的问题。