Safan Muntaser, Dietz Klaus
Mathematics Department, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt.
Math Biosci Eng. 2009 Apr;6(2):395-407. doi: 10.3934/mbe.2009.6.395.
The SIS model of Hadeler and Castillo-Chavez [9] with a constant transfer rate of susceptibles into a partially protected state has been modified to take into account vaccination at birth. The model shows backward bifurcation (existence of multiple endemic stationary states) for certain values of parameters. Parameter values ensuring the existence and nonexistence of endemic equilibria have been discussed. Local and global stability of equilibria have been investigated. The minimum effort required to eradicate the infection has been determined.
哈德勒和卡斯蒂略 - 查韦斯 [9] 的SIS模型,其中易感者以恒定速率转移到部分受保护状态,已被修改以考虑出生时的疫苗接种情况。该模型在某些参数值下显示出向后分岔(存在多个地方病稳态)。已经讨论了确保地方病平衡点存在和不存在的参数值。已经研究了平衡点的局部和全局稳定性。已经确定了根除感染所需的最小努力。