Suppr超能文献

非洲爪蟾胚胎中xCR1信使核糖核酸的空间受限翻译。

Spatially restricted translation of the xCR1 mRNA in Xenopus embryos.

作者信息

Zhang Yan, Forinash Kara D, McGivern Jered, Fritz Brian, Dorey Karel, Sheets Michael D

机构信息

University of Wisconsin-Madison, Department of Biomolecular Chemistry, 1300 University Avenue, Madison, WI 53706, USA.

出版信息

Mol Cell Biol. 2009 Jul;29(13):3791-802. doi: 10.1128/MCB.01865-08. Epub 2009 Apr 13.

Abstract

The xCR1 protein is a maternal determinant and cofactor for nodal signaling in vertebrate embryos. The xCR1 protein accumulates specifically in the animal cells of Xenopus embryos, but maternal xCR1 mRNA is distributed equally throughout all embryonic cells. Here, we show that vegetal cell-specific translational repression of xCR1 mRNA contributes to this spatially restricted accumulation of the xCR1 protein in Xenopus embryos. xCR1 mRNA was associated with polyribosomes in animal cells but not vegetal cells. A 351-nucleotide region of xCR1 mRNA's 3' untranslated region was sufficient to confer a spatially restricted pattern of translation to a luciferase reporter mRNA by repressing translation in vegetal cells. Repression depended upon the mRNA's 5' cap but not its 3' poly(A) tail. Furthermore, the region of xCR1 mRNA sufficient to confer vegetal cell-specific repression contained both Pumilio binding elements (PBEs) and binding sites for the CUG-BP1 protein. The PBEs and the CUG-BP1 sites were necessary but not sufficient for translation repression. Our studies of xCR1 mRNA document the first example of spatially regulated translation in controlling the asymmetric distribution of a maternal determinant in vertebrates.

摘要

xCR1蛋白是脊椎动物胚胎中节点信号传导的母体决定因素和辅助因子。xCR1蛋白特异性地积累在非洲爪蟾胚胎的动物细胞中,但母体xCR1 mRNA在所有胚胎细胞中均匀分布。在这里,我们表明xCR1 mRNA在植物细胞中的特异性翻译抑制导致了xCR1蛋白在非洲爪蟾胚胎中的这种空间受限积累。xCR1 mRNA在动物细胞中与多核糖体相关,但在植物细胞中不相关。xCR1 mRNA 3'非翻译区的一个351个核苷酸的区域足以通过抑制植物细胞中的翻译,赋予荧光素酶报告基因mRNA一种空间受限的翻译模式。抑制作用依赖于mRNA的5'帽而不是其3'聚腺苷酸尾。此外,足以赋予植物细胞特异性抑制作用的xCR1 mRNA区域同时包含Pumilio结合元件(PBEs)和CUG-BP1蛋白的结合位点。PBEs和CUG-BP1位点对于翻译抑制是必要的,但不是充分的。我们对xCR1 mRNA的研究记录了脊椎动物中空间调控翻译在控制母体决定因素不对称分布方面的首个例子。

相似文献

1
Spatially restricted translation of the xCR1 mRNA in Xenopus embryos.
Mol Cell Biol. 2009 Jul;29(13):3791-802. doi: 10.1128/MCB.01865-08. Epub 2009 Apr 13.
3
Determinants of RNA binding and translational repression by the Bicaudal-C regulatory protein.
J Biol Chem. 2014 Mar 14;289(11):7497-504. doi: 10.1074/jbc.M113.526426. Epub 2014 Jan 29.
4
Translational control of maskin mRNA by its 3' untranslated region.
Biol Cell. 2007 May;99(5):239-50. doi: 10.1042/BC20060112.
5
Bicaudal-C spatially controls translation of vertebrate maternal mRNAs.
RNA. 2013 Nov;19(11):1575-82. doi: 10.1261/rna.041665.113. Epub 2013 Sep 23.
6
Regulated Pumilio-2 binding controls RINGO/Spy mRNA translation and CPEB activation.
Genes Dev. 2006 Jan 15;20(2):199-209. doi: 10.1101/gad.1383106.
7
Coordinate control of translation and localization of Vg1 mRNA in Xenopus oocytes.
Proc Natl Acad Sci U S A. 2000 Nov 21;97(24):13132-7. doi: 10.1073/pnas.97.24.13132.
10
Translational repression by deadenylases.
J Biol Chem. 2010 Sep 10;285(37):28506-13. doi: 10.1074/jbc.M110.150763. Epub 2010 Jul 15.

引用本文的文献

1
TurboID functions as an efficient biotin ligase for BioID applications in Xenopus embryos.
Dev Biol. 2022 Dec;492:133-138. doi: 10.1016/j.ydbio.2022.10.005. Epub 2022 Oct 18.
2
Bicaudal-C Post-transcriptional regulator of cell fates and functions.
Front Cell Dev Biol. 2022 Sep 7;10:981696. doi: 10.3389/fcell.2022.981696. eCollection 2022.
5
Assaying NanoLuc Luciferase Activity from mRNA-Injected Xenopus Embryos.
Methods Mol Biol. 2019;1920:33-39. doi: 10.1007/978-1-4939-9009-2_3.
6
The translational regulation of maternal mRNAs in time and space.
FEBS Lett. 2018 Sep;592(17):3007-3023. doi: 10.1002/1873-3468.13183. Epub 2018 Jul 12.
7
Controlling the Messenger: Regulated Translation of Maternal mRNAs in Xenopus laevis Development.
Adv Exp Med Biol. 2017;953:49-82. doi: 10.1007/978-3-319-46095-6_2.
10
The multifaceted role of the embryonic gene Cripto-1 in cancer, stem cells and epithelial-mesenchymal transition.
Semin Cancer Biol. 2014 Dec;29:51-8. doi: 10.1016/j.semcancer.2014.08.003. Epub 2014 Aug 19.

本文引用的文献

1
3
Multifunctional deadenylase complexes diversify mRNA control.
Nat Rev Mol Cell Biol. 2008 Apr;9(4):337-44. doi: 10.1038/nrm2370. Epub 2008 Mar 12.
4
Identification of CUG-BP1/EDEN-BP target mRNAs in Xenopus tropicalis.
Nucleic Acids Res. 2008 Apr;36(6):1861-70. doi: 10.1093/nar/gkn031. Epub 2008 Feb 11.
5
A combinatorial code for CPE-mediated translational control.
Cell. 2008 Feb 8;132(3):434-48. doi: 10.1016/j.cell.2007.12.038.
6
Conserved GU-rich elements mediate mRNA decay by binding to CUG-binding protein 1.
Mol Cell. 2008 Feb 1;29(2):263-70. doi: 10.1016/j.molcel.2007.11.024.
7
Regulating translation of maternal messages: multiple repression mechanisms.
Trends Cell Biol. 2007 Nov;17(11):547-54. doi: 10.1016/j.tcb.2007.09.002. Epub 2007 Oct 29.
8
Two yeast PUF proteins negatively regulate a single mRNA.
J Biol Chem. 2007 May 25;282(21):15430-8. doi: 10.1074/jbc.M611253200. Epub 2007 Mar 27.
9
Translational control of maskin mRNA by its 3' untranslated region.
Biol Cell. 2007 May;99(5):239-50. doi: 10.1042/BC20060112.
10
Autoregulation of GLD-2 cytoplasmic poly(A) polymerase.
RNA. 2007 Feb;13(2):188-99. doi: 10.1261/rna.333507. Epub 2006 Dec 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验