Duk Maria A, Gursky Vitaly V, Samsonova Maria G, Surkova Svetlana Yu
Mathematical Biology and Bioinformatics Laboratory, Peter the Great Saint Petersburg Polytechnic University, 195251 St. Petersburg, Russia.
Theoretical Department, Ioffe Institute, 194021 St. Petersburg, Russia.
Life (Basel). 2021 Nov 13;11(11):1232. doi: 10.3390/life11111232.
Unlike transcriptional regulation, the post-transcriptional mechanisms underlying zygotic segmentation gene expression in early embryo have been insufficiently investigated. Condition-specific post-transcriptional regulation plays an important role in the development of many organisms. Our recent study revealed the domain- and genotype-specific differences between mRNA and the protein expression of , , and genes in cleavage cycle 14A. Here, we use this dataset and the dynamic mathematical model to recapitulate protein expression from the corresponding mRNA patterns. The condition-specific nonuniformity in parameter values is further interpreted in terms of possible post-transcriptional modifications. For expression in wild-type embryos, our results predict the position-specific differences in protein production. The protein synthesis rate parameter is significantly higher in anterior domain compared to the posterior domain. The parameter sets describing Gt protein dynamics in wild-type embryos and mutants are genotype-specific. The spatial discrepancy between mRNA and protein posterior expression in mutants is well reproduced by the whole axis model, thus rejecting the involvement of post-transcriptional mechanisms. Our models fail to describe the full dynamics of expression, presumably due to its complex shape and the variable time delays between mRNA and protein patterns, which likely require a more complex model. Overall, our modeling approach enables the prediction of regulatory scenarios underlying the condition-specific differences between mRNA and protein expression in early embryo.
与转录调控不同,早期胚胎中合子分割基因表达背后的转录后机制尚未得到充分研究。条件特异性转录后调控在许多生物体的发育中起着重要作用。我们最近的研究揭示了在分裂周期14A中,mRNA与、和基因的蛋白质表达之间的结构域和基因型特异性差异。在这里,我们使用这个数据集和动态数学模型,从相应的mRNA模式中概括蛋白质表达。参数值中条件特异性的不均匀性根据可能的转录后修饰进一步解释。对于野生型胚胎中的表达,我们的结果预测了蛋白质产生的位置特异性差异。与后结构域相比,前结构域中的蛋白质合成速率参数显著更高。描述野生型胚胎和突变体中Gt蛋白动力学的参数集是基因型特异性的。全轴模型很好地再现了突变体中mRNA和蛋白质后表达之间的空间差异,从而排除了转录后机制的参与。我们的模型未能描述表达的完整动力学,可能是由于其复杂的形状以及mRNA和蛋白质模式之间可变的时间延迟,这可能需要更复杂的模型。总体而言,我们的建模方法能够预测早期胚胎中mRNA和蛋白质表达之间条件特异性差异背后的调控情景。