Slavik Ludek, Krcova Vera, Hlusi Antonin, Prochazkova Jana, Prochazka Martin, Ulehlova Jana, Indrak Karel
Department of Hemato-oncology, University Hospital, Olomouc, Czech Republic.
Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2009 Mar;153(1):19-25. doi: 10.5507/bp.2009.003.
Molecular genetic methods were implemented in the detection of thrombophilic disorders in the 1990's with the discovery of coagulation inhibitors antithrombin III (AT III), protein C (PC) and S (PS). The discovery of the molecular cause of activated protein C (APC) resistance by Bertina in 1994 greatly expanded their utilization.
Currently, a broad group of molecular genetic markers with a clearly demonstrated risk of thrombophilia are used--mutation of FV Leiden 506R/Q, mutation of prothrombin (F II) 20210G/A, mutation of methylenetetrahydrofolate reductase (MTHFR) 677C/T in homozygous form, mutation of plasminogen activator inhibitor (PAI-1) 4G/5G, mutations of single coagulation inhibitors as well as a number of polymorphisms with controversial thrombophilic risk such as F XIII Val34Leu, platelet glycoproteins, endothelial protein C receptor and thrombomodulin. Another area utilizing molecular genetic methods is research of the pathophysiology of individual coagulation processes. To date, the greatest advances in regard to APC resistance have been achieved here. Although the molecular cause of APC resistance was clearly demonstrated in the 1990's, its clinical variability has not yet been fully explained. The same is true for the second most widespread mutation, prothrombin gene mutation, where only the latest research has hinted at a possible mechanism of expression of the genetic changes in the actual coagulation process.
The future of molecular genetic methods is in achieving a complex understanding of the pathophysiology of thrombophilia and not only in its utilization as a method for detecting many polymorphisms with a very low risk of thrombosis.
20世纪90年代,随着凝血抑制剂抗凝血酶III(AT III)、蛋白C(PC)和蛋白S(PS)的发现,分子遗传学方法被应用于血栓形成倾向疾病的检测。1994年贝蒂娜发现活化蛋白C(APC)抵抗的分子原因后,这些方法的应用得到了极大扩展。
目前,使用了一大类已明确显示有血栓形成倾向风险的分子遗传标记——凝血因子V莱顿突变506R/Q、凝血酶原(F II)突变20210G/A、纯合形式的亚甲基四氢叶酸还原酶(MTHFR)突变677C/T、纤溶酶原激活物抑制剂(PAI-1)突变4G/5G、单一凝血抑制剂的突变以及一些血栓形成倾向风险存在争议的多态性,如凝血因子XIII Val34Leu、血小板糖蛋白、内皮蛋白C受体和血栓调节蛋白。分子遗传学方法的另一个应用领域是对个体凝血过程病理生理学的研究。迄今为止,在APC抵抗方面取得了最大进展。尽管APC抵抗的分子原因在20世纪90年代已得到明确证实,但其临床变异性尚未得到充分解释。第二常见的突变——凝血酶原基因突变也是如此,只有最新研究暗示了基因变化在实际凝血过程中的可能表达机制。
分子遗传学方法的未来在于对血栓形成倾向的病理生理学有全面的理解,而不仅仅是将其作为一种检测许多血栓形成风险极低的多态性的方法。