Suppr超能文献

用于复杂性状的高密度全基因组关联研究中的改良正向多元回归。

A modified forward multiple regression in high-density genome-wide association studies for complex traits.

作者信息

Gu Xiangjun, Frankowski Ralph F, Rosner Gary L, Relling Mary, Peng Bo, Amos Christopher I

机构信息

Department of Epidemiology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA.

出版信息

Genet Epidemiol. 2009 Sep;33(6):518-25. doi: 10.1002/gepi.20404.

Abstract

Genome-wide association studies (GWAS) have been widely used to identify genetic effects on complex diseases or traits. Most currently used methods are based on separate single-nucleotide polymorphism (SNP) analyses. Because this approach requires correction for multiple testing to avoid excessive false-positive results, it suffers from reduced power to detect weak genetic effects under limited sample size. To increase the power to detect multiple weak genetic factors and reduce false-positive results caused by multiple tests and dependence among test statistics, a modified forward multiple regression (MFMR) approach is proposed. Simulation studies show that MFMR has higher power than the Bonferroni and false discovery rate procedures for detecting moderate and weak genetic effects, and MFMR retains an acceptable-false positive rate even if causal SNPs are correlated with many SNPs due to population stratification or other unknown reasons.

摘要

全基因组关联研究(GWAS)已被广泛用于识别复杂疾病或性状的遗传效应。目前大多数使用的方法基于单独的单核苷酸多态性(SNP)分析。由于这种方法需要进行多重检验校正以避免过多的假阳性结果,在样本量有限的情况下,检测微弱遗传效应的能力会降低。为了提高检测多个微弱遗传因素的能力,并减少多重检验以及检验统计量之间的依赖性所导致的假阳性结果,提出了一种改进的向前多重回归(MFMR)方法。模拟研究表明,在检测中等和微弱遗传效应方面,MFMR比Bonferroni方法和错误发现率程序具有更高的检验效能,并且即使由于群体分层或其他未知原因导致因果SNP与许多SNP相关,MFMR仍能保持可接受的假阳性率。

相似文献

2
Mining gold dust under the genome wide significance level: a two-stage approach to analysis of GWAS.
Genet Epidemiol. 2011 Feb;35(2):111-8. doi: 10.1002/gepi.20556. Epub 2010 Dec 31.
3
Finding type 2 diabetes causal single nucleotide polymorphism combinations and functional modules from genome-wide association data.
BMC Med Inform Decis Mak. 2013;13 Suppl 1(Suppl 1):S3. doi: 10.1186/1472-6947-13-S1-S3. Epub 2013 Apr 5.
5
Bivariate association analysis for quantitative traits using generalized estimation equation.
J Genet Genomics. 2009 Dec;36(12):733-43. doi: 10.1016/S1673-8527(08)60166-6.
6
A hidden Markov random field model for genome-wide association studies.
Biostatistics. 2010 Jan;11(1):139-50. doi: 10.1093/biostatistics/kxp043. Epub 2009 Oct 12.
8
Covariate-modulated local false discovery rate for genome-wide association studies.
Bioinformatics. 2014 Aug 1;30(15):2098-104. doi: 10.1093/bioinformatics/btu145. Epub 2014 Apr 7.
10
A novel association test for multiple secondary phenotypes from a case-control GWAS.
Genet Epidemiol. 2017 Jul;41(5):413-426. doi: 10.1002/gepi.22045. Epub 2017 Apr 10.

引用本文的文献

2
Bayesian variable selection for hierarchical gene-environment and gene-gene interactions.
Hum Genet. 2015 Jan;134(1):23-36. doi: 10.1007/s00439-014-1478-5. Epub 2014 Aug 26.
3
Voxelwise genome-wide association study (vGWAS).
Neuroimage. 2010 Nov 15;53(3):1160-74. doi: 10.1016/j.neuroimage.2010.02.032. Epub 2010 Feb 17.

本文引用的文献

1
Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1.
Nat Genet. 2008 May;40(5):616-22. doi: 10.1038/ng.109. Epub 2008 Apr 2.
2
TRAF1-C5 as a risk locus for rheumatoid arthritis--a genomewide study.
N Engl J Med. 2007 Sep 20;357(12):1199-209. doi: 10.1056/NEJMoa073491. Epub 2007 Sep 5.
3
Imputation-based analysis of association studies: candidate regions and quantitative traits.
PLoS Genet. 2007 Jul;3(7):e114. doi: 10.1371/journal.pgen.0030114. Epub 2007 May 30.
4
A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants.
Science. 2007 Jun 1;316(5829):1341-5. doi: 10.1126/science.1142382. Epub 2007 Apr 26.
5
Principal components analysis corrects for stratification in genome-wide association studies.
Nat Genet. 2006 Aug;38(8):904-9. doi: 10.1038/ng1847. Epub 2006 Jul 23.
6
A genotype calling algorithm for affymetrix SNP arrays.
Bioinformatics. 2006 Jan 1;22(1):7-12. doi: 10.1093/bioinformatics/bti741. Epub 2005 Nov 2.
7
Recent developments in genomewide association scans: a workshop summary and review.
Am J Hum Genet. 2005 Sep;77(3):337-45. doi: 10.1086/432962. Epub 2005 Aug 1.
8
An efficient Monte Carlo approach to assessing statistical significance in genomic studies.
Bioinformatics. 2005 Mar;21(6):781-7. doi: 10.1093/bioinformatics/bti053. Epub 2004 Sep 28.
9
Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D.
Nature. 2004 Apr 8;428(6983):653-7. doi: 10.1038/nature02398.
10
Optimal two-stage genotyping in population-based association studies.
Genet Epidemiol. 2003 Sep;25(2):149-57. doi: 10.1002/gepi.10260.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验