Gu Xiangjun, Frankowski Ralph F, Rosner Gary L, Relling Mary, Peng Bo, Amos Christopher I
Department of Epidemiology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA.
Genet Epidemiol. 2009 Sep;33(6):518-25. doi: 10.1002/gepi.20404.
Genome-wide association studies (GWAS) have been widely used to identify genetic effects on complex diseases or traits. Most currently used methods are based on separate single-nucleotide polymorphism (SNP) analyses. Because this approach requires correction for multiple testing to avoid excessive false-positive results, it suffers from reduced power to detect weak genetic effects under limited sample size. To increase the power to detect multiple weak genetic factors and reduce false-positive results caused by multiple tests and dependence among test statistics, a modified forward multiple regression (MFMR) approach is proposed. Simulation studies show that MFMR has higher power than the Bonferroni and false discovery rate procedures for detecting moderate and weak genetic effects, and MFMR retains an acceptable-false positive rate even if causal SNPs are correlated with many SNPs due to population stratification or other unknown reasons.
全基因组关联研究(GWAS)已被广泛用于识别复杂疾病或性状的遗传效应。目前大多数使用的方法基于单独的单核苷酸多态性(SNP)分析。由于这种方法需要进行多重检验校正以避免过多的假阳性结果,在样本量有限的情况下,检测微弱遗传效应的能力会降低。为了提高检测多个微弱遗传因素的能力,并减少多重检验以及检验统计量之间的依赖性所导致的假阳性结果,提出了一种改进的向前多重回归(MFMR)方法。模拟研究表明,在检测中等和微弱遗传效应方面,MFMR比Bonferroni方法和错误发现率程序具有更高的检验效能,并且即使由于群体分层或其他未知原因导致因果SNP与许多SNP相关,MFMR仍能保持可接受的假阳性率。