Suppr超能文献

基于病例对照样本的全基因组关联扫描分析二级特征。

Genome-wide association scans for secondary traits using case-control samples.

机构信息

Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts 02115, USA.

出版信息

Genet Epidemiol. 2009 Dec;33(8):717-28. doi: 10.1002/gepi.20424.

Abstract

Genome-wide association studies (GWAS) require considerable investment, so researchers often study multiple traits collected on the same set of subjects to maximize return. However, many GWAS have adopted a case-control design; improperly accounting for case-control ascertainment can lead to biased estimates of association between markers and secondary traits. We show that under the null hypothesis of no marker-secondary trait association, naïve analyses that ignore ascertainment or stratify on case-control status have proper Type I error rates except when both the marker and secondary trait are independently associated with disease risk. Under the alternative hypothesis, these methods are unbiased when the secondary trait is not associated with disease risk. We also show that inverse-probability-of-sampling-weighted (IPW) regression provides unbiased estimates of marker-secondary trait association. We use simulation to quantify the Type I error, power and bias of naïve and IPW methods. IPW regression has appropriate Type I error in all situations we consider, but has lower power than naïve analyses. The bias for naïve analyses is small provided the marker is independent of disease risk. Considering the majority of tested markers in a GWAS are not associated with disease risk, naïve analyses provide valid tests of and nearly unbiased estimates of marker-secondary trait association. Care must be taken when there is evidence that both the secondary trait and tested marker are associated with the primary disease, a situation we illustrate using an analysis of the relationship between a marker in FGFR2 and mammographic density in a breast cancer case-control sample.

摘要

全基因组关联研究(GWAS)需要大量的投资,因此研究人员经常研究同一组受试者的多种特征,以最大限度地提高回报。然而,许多 GWAS 采用了病例对照设计;不正确地考虑病例对照的确定可能导致标记物与次要特征之间关联的有偏估计。我们表明,在没有标记物-次要特征关联的零假设下,忽略确定或对病例对照状态分层的幼稚分析具有适当的Ⅰ型错误率,除非标记物和次要特征都独立与疾病风险相关。在替代假设下,当次要特征与疾病风险无关时,这些方法是无偏的。我们还表明,反抽样概率加权(IPW)回归提供了标记物-次要特征关联的无偏估计。我们使用模拟来量化幼稚和 IPW 方法的Ⅰ型错误、功效和偏差。在我们考虑的所有情况下,IPW 回归都具有适当的Ⅰ型错误,但功效低于幼稚分析。只要标记物独立于疾病风险,幼稚分析的偏差就很小。考虑到 GWAS 中大多数测试的标记物都与疾病风险无关,幼稚分析提供了对标记物-次要特征关联的有效检验和几乎无偏的估计。当有证据表明次要特征和测试标记物都与主要疾病相关时,必须谨慎,我们使用在乳腺癌病例对照样本中 FGFR2 中的标记物与乳房 X 光密度之间的关系分析来说明这种情况。

相似文献

1
Genome-wide association scans for secondary traits using case-control samples.
Genet Epidemiol. 2009 Dec;33(8):717-28. doi: 10.1002/gepi.20424.
2
A novel association test for multiple secondary phenotypes from a case-control GWAS.
Genet Epidemiol. 2017 Jul;41(5):413-426. doi: 10.1002/gepi.22045. Epub 2017 Apr 10.
3
A General and Robust Framework for Secondary Traits Analysis.
Genetics. 2016 Apr;202(4):1329-43. doi: 10.1534/genetics.115.181073. Epub 2016 Feb 19.
4
Robust estimation for secondary trait association in case-control genetic studies.
Am J Epidemiol. 2014 May 15;179(10):1264-72. doi: 10.1093/aje/kwu039. Epub 2014 Apr 9.
6
Genome-wide association analysis of secondary imaging phenotypes from the Alzheimer's disease neuroimaging initiative study.
Neuroimage. 2017 Feb 1;146:983-1002. doi: 10.1016/j.neuroimage.2016.09.055. Epub 2016 Oct 4.
8
Inverse probability weighting is an effective method to address selection bias during the analysis of high dimensional data.
Genet Epidemiol. 2021 Sep;45(6):593-603. doi: 10.1002/gepi.22418. Epub 2021 Jun 15.
10
Design considerations for genetic linkage and association studies.
Methods Mol Biol. 2012;850:237-62. doi: 10.1007/978-1-61779-555-8_13.

引用本文的文献

2
Estimating Causal Effects on a Disease Progression Trait Using Bivariate Mendelian Randomisation.
Genet Epidemiol. 2025 Jan;49(1):e22600. doi: 10.1002/gepi.22600. Epub 2024 Oct 24.
3
Revealing polygenic pleiotropy using genetic risk scores for asthma.
HGG Adv. 2023 Aug 17;4(4):100233. doi: 10.1016/j.xhgg.2023.100233. eCollection 2023 Oct 12.
4
Use of nonsteroidal anti-inflammatory drugs and poor olfaction in women.
Int Forum Allergy Rhinol. 2024 Mar;14(3):639-650. doi: 10.1002/alr.23241. Epub 2023 Aug 7.
5
Posttraumatic Stress Disorder, Depression, and Accelerated Aging: Leukocyte Telomere Length in the Nurses' Health Study II.
Biol Psychiatry Glob Open Sci. 2022 Jun 2;3(3):510-518. doi: 10.1016/j.bpsgos.2022.05.006. eCollection 2023 Jul.
6
Patterns of item nonresponse behaviour to survey questionnaires are systematic and associated with genetic loci.
Nat Hum Behav. 2023 Aug;7(8):1371-1387. doi: 10.1038/s41562-023-01632-7. Epub 2023 Jun 29.
7
HostSeq: a Canadian whole genome sequencing and clinical data resource.
BMC Genom Data. 2023 May 2;24(1):26. doi: 10.1186/s12863-023-01128-3.
8
Regression Reconstruction from a Retrospective Sample.
Econom Stat. 2023 Jan;25:87-92. doi: 10.1016/j.ecosta.2020.10.003.
9
Genetic architecture of mammographic density as a risk factor for breast cancer: a systematic review.
Clin Transl Oncol. 2023 Jun;25(6):1729-1747. doi: 10.1007/s12094-022-03071-8. Epub 2023 Jan 13.
10
A genome-wide association study of mammographic texture variation.
Breast Cancer Res. 2022 Nov 7;24(1):76. doi: 10.1186/s13058-022-01570-8.

本文引用的文献

1
Common variants near MC4R are associated with fat mass, weight and risk of obesity.
Nat Genet. 2008 Jun;40(6):768-75. doi: 10.1038/ng.140. Epub 2008 May 4.
2
Identification of ten loci associated with height highlights new biological pathways in human growth.
Nat Genet. 2008 May;40(5):584-91. doi: 10.1038/ng.125. Epub 2008 Apr 6.
3
A variant associated with nicotine dependence, lung cancer and peripheral arterial disease.
Nature. 2008 Apr 3;452(7187):638-642. doi: 10.1038/nature06846.
5
Genomics: when the smoke clears ..
Nature. 2008 Apr 3;452(7187):537-8. doi: 10.1038/452537a.
6
Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1.
Nat Genet. 2008 May;40(5):616-22. doi: 10.1038/ng.109. Epub 2008 Apr 2.
7
Multiple newly identified loci associated with prostate cancer susceptibility.
Nat Genet. 2008 Mar;40(3):316-21. doi: 10.1038/ng.90. Epub 2008 Feb 10.
8
Common variants in the GDF5-UQCC region are associated with variation in human height.
Nat Genet. 2008 Feb;40(2):198-203. doi: 10.1038/ng.74. Epub 2008 Jan 13.
9
Analyses of genome-wide association scans for additional outcomes.
Epidemiology. 2007 Nov;18(6):838. doi: 10.1097/EDE.0b013e318154c7e2.
10
A common variant of HMGA2 is associated with adult and childhood height in the general population.
Nat Genet. 2007 Oct;39(10):1245-50. doi: 10.1038/ng2121. Epub 2007 Sep 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验