Suppr超能文献

用于涂层导体的CeO2/La2Zr2O7/Ni结构中作为缓冲层的CeO2织构的拉曼研究。

Raman study of CeO2 texture as a buffer layer in the CeO2/La2Zr2O7/Ni architecture for coated conductors.

作者信息

Jiménez C, Caroff T, Bartasyte A, Margueron S, Abrutis A, Chaix-Pluchery O, Weiss F

机构信息

LMGP, UMR 5628 CNRS, Grenoble INP, BP 257 38016 Grenoble, France.

出版信息

Appl Spectrosc. 2009 Apr;63(4):401-6. doi: 10.1366/000370209787944334.

Abstract

The CeO(2)/La(2)Zr(2)O(7)/Ni piled-up structure is a very promising architecture for YBa(2)Cu(3)O(7) (YBCO) coated conductors. We have grown YBCO/CeO(2)/LZO/Ni epitaxial structures by metalorganic decomposition (MOD) and metalorganic chemical vapor deposition (MOCVD) methods. The crystallographic quality of the CeO(2) layer is not well determined by conventional X-ray diffraction (XRD) due to the superposition of LZO and CeO(2) reflections. An alternative simple Raman spectroscopy analysis of the crystalline quality of the CeO(2) films is proposed. The F(2g) Raman mode of CeO(2) can be quantified either by using two polarization configurations (crossed or parallel) or at two different rotation angles around the normal axis (0 degrees and 45 degrees ) to obtain information about the sample texture. The sample texture can be determined via a quality factor (referred to as the Raman intensity ratio, RIR) consisting of calculating the ratio of the integrated intensity of the CeO(2) F(2g) mode at 0 degrees and 45 degrees in parallel polarization. This factor correlates with superconducting performance and the technique can be used as an on-line nondestructive characterization method.

摘要

CeO(2)/La(2)Zr(2)O(7)/Ni堆积结构对于YBa(2)Cu(3)O(7)(YBCO)涂层导体来说是一种非常有前景的结构。我们通过金属有机分解(MOD)和金属有机化学气相沉积(MOCVD)方法生长了YBCO/CeO(2)/LZO/Ni外延结构。由于LZO和CeO(2)反射的叠加,常规X射线衍射(XRD)无法很好地确定CeO(2)层的晶体质量。本文提出了一种用于分析CeO(2)薄膜晶体质量的简单拉曼光谱分析方法。CeO(2)的F(2g)拉曼模式可以通过两种偏振配置(交叉或平行)或绕法线轴的两个不同旋转角度(0度和45度)进行量化,以获取有关样品织构的信息。样品织构可以通过一个品质因数(称为拉曼强度比,RIR)来确定,该品质因数是通过计算平行偏振下0度和45度时CeO(2) F(2g)模式的积分强度之比得到的。这个因数与超导性能相关,该技术可以用作在线无损表征方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验