Bakowies Dirk
Laboratory of Physical Chemistry, ETH Zürich, CH 8093 Zürich, Switzerland.
J Chem Phys. 2009 Apr 14;130(14):144113. doi: 10.1063/1.3089241.
A theoretical composite approach, termed ATOMIC for Ab initio Thermochemistry using Optimal-balance Models with Isodesmic Corrections, is introduced for the calculation of molecular atomization energies and enthalpies of formation. Care is taken to achieve optimal balance in accuracy and cost between the various components contributing to high-level estimates of the fully correlated energy at the infinite-basis-set limit. To this end, the energy at the coupled-cluster level of theory including single, double, and quasiperturbational triple excitations is decomposed into Hartree-Fock, low-order correlation (MP2, CCSD), and connected-triples contributions and into valence-shell and core contributions. Statistical analyses for 73 representative neutral closed-shell molecules containing hydrogen and at least three first-row atoms (CNOF) are used to devise basis-set and extrapolation requirements for each of the eight components to maintain a given level of accuracy. Pople's concept of bond-separation reactions is implemented in an ab initio framework, providing for a complete set of high-level precomputed isodesmic corrections which can be used for any molecule for which a valence structure can be drawn. Use of these corrections is shown to lower basis-set requirements dramatically for each of the eight components of the composite model. A hierarchy of three levels is suggested for isodesmically corrected composite models which reproduce atomization energies at the reference level of theory to within 0.1 kcal/mol (A), 0.3 kcal/mol (B), and 1 kcal/mol (C). Large-scale statistical analysis shows that corrections beyond the CCSD(T) reference level of theory, including coupled-cluster theory with fully relaxed connected triple and quadruple excitations, first-order relativistic and diagonal Born-Oppenheimer corrections can normally be dealt with using a greatly simplified model that assumes thermoneutral bond-separation reactions and that reduces the estimate of these corrections to the simple task of adding up bond increments. Preliminary validation with experimental enthalpies of formation using the subset of neutral closed-shell (HCNOF) species contained in the G3/99 test set indicates that the ATOMIC protocol performs slightly better than the popular G3 approach. The newly introduced protocol does not require empirical calibration, however, and it is still efficient enough to be applied routinely to molecules with 10 or 20 nonhydrogen atoms.
介绍了一种理论上的复合方法,称为ATOMIC(使用具有等键反应校正的最优平衡模型的从头算热化学方法),用于计算分子原子化能和生成焓。在无限基组极限下,对构成完全相关能量高级估计的各个组成部分,要谨慎地在精度和成本之间实现最优平衡。为此,将包含单、双和准微扰三重激发的耦合簇理论水平的能量分解为哈特里-福克、低阶相关(MP2、CCSD)和连接三重激发贡献,以及价层和核心贡献。对73个含有氢且至少有三个第一行原子(C、N、O、F)的代表性中性闭壳层分子进行统计分析,以设计八个组成部分中每个部分的基组和外推要求,以维持给定的精度水平。波普尔的键分离反应概念在从头算框架中得以实现,提供了一套完整的高级预计算等键反应校正,可用于任何能画出价键结构的分子。结果表明,使用这些校正可显著降低复合模型八个组成部分中每个部分的基组要求。对于等键反应校正的复合模型,建议分为三个层次,它们在理论参考水平下重现原子化能的误差分别在0.1千卡/摩尔(A)、0.3千卡/摩尔(B)和1千卡/摩尔(C)以内。大规模统计分析表明,超出CCSD(T)理论参考水平的校正,包括具有完全弛豫连接三重和四重激发的耦合簇理论、一阶相对论和对角玻恩-奥本海默校正,通常可以使用一个大大简化的模型来处理,该模型假设热中性键分离反应,并将这些校正的估计简化为简单的键增量相加任务。使用G3/99测试集中包含的中性闭壳层(HCNOF)物种子集的实验生成焓进行初步验证表明,ATOMIC方法的表现略优于流行的G3方法。然而,新引入的方法不需要经验校准,并且其效率仍然足够高,能够常规应用于含有10个或20个非氢原子的分子。