Suppr超能文献

基于纤维蛋白的组织工程心脏瓣膜小叶的平面双轴行为。

Planar biaxial behavior of fibrin-based tissue-engineered heart valve leaflets.

作者信息

Robinson Paul S, Tranquillo Robert T

机构信息

Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA.

出版信息

Tissue Eng Part A. 2009 Oct;15(10):2763-72. doi: 10.1089/ten.tea.2008.0426.

Abstract

To design more effective tissue-engineered heart valve replacements, the replacement tissue may need to mimic the biaxial stress-strain behavior of native heart valve tissue. This study characterized the planar biaxial properties of tissue-engineered valve leaflets and native aortic valve leaflets. Fibrin-based valve equivalent (VE) and porcine aortic valve (PAV) leaflets were subjected to incremental biaxial stress relaxation testing, during which fiber alignments were measured, over a range of strain ratios. Results showed that VE leaflets exhibited a modulus and fiber reorientation behavior that correlated with strain ratio. In contrast, PAV leaflets maintained their relaxed modulus and fiber alignment when exposed to nonequibiaxial strain, but exhibited changes in stress relaxation. In uniaxial and equi-biaxial tension, there were few observed differences in relaxation behavior between VE and PAV leaflets, despite differences in the modulus and fiber reorientation. Likewise, in both tissues there was similar relaxation response in the circumferential and radial directions in biaxial tension, despite different moduli in these two directions. This study presents some fundamental differences in the mechanical response to biaxial tension of fibrin-based tissue-engineered constructs and native valve tissue. It also highlights the importance of using a range of strain ratios when generating mechanical property data for valvular and engineered tissues. The data presented on the stress-strain, relaxation, and fiber reorientation of VE tissue will be useful in future efforts to mathematically model and improve fibrin-based tissue-engineered constructs.

摘要

为了设计出更有效的组织工程心脏瓣膜替代品,替代组织可能需要模拟天然心脏瓣膜组织的双轴应力-应变行为。本研究对组织工程瓣膜小叶和天然主动脉瓣小叶的平面双轴特性进行了表征。基于纤维蛋白的瓣膜等效物(VE)和猪主动脉瓣(PAV)小叶在一系列应变比范围内进行了增量双轴应力松弛测试,在此期间测量了纤维排列。结果表明,VE小叶表现出与应变比相关的模量和纤维重新定向行为。相比之下,PAV小叶在暴露于非等双轴应变时保持其松弛模量和纤维排列,但应力松弛出现变化。在单轴和等双轴拉伸中,尽管模量和纤维重新定向存在差异,但VE和PAV小叶之间的松弛行为几乎没有观察到差异。同样,在双轴拉伸中,尽管这两个方向的模量不同,但两种组织在圆周和径向方向上都有相似的松弛响应。本研究揭示了基于纤维蛋白的组织工程构建体和天然瓣膜组织在双轴拉伸力学响应方面的一些基本差异。它还强调了在生成瓣膜和工程组织的力学性能数据时使用一系列应变比的重要性。所呈现的关于VE组织的应力-应变、松弛和纤维重新定向的数据将有助于未来在对基于纤维蛋白的组织工程构建体进行数学建模和改进方面的努力。

相似文献

1
Planar biaxial behavior of fibrin-based tissue-engineered heart valve leaflets.
Tissue Eng Part A. 2009 Oct;15(10):2763-72. doi: 10.1089/ten.tea.2008.0426.
3
Planar biaxial testing of heart valve cusp replacement biomaterials: Experiments, theory and material constants.
Acta Biomater. 2016 Nov;45:303-320. doi: 10.1016/j.actbio.2016.08.036. Epub 2016 Aug 26.
4
Time-dependent biaxial mechanical behavior of the aortic heart valve leaflet.
J Biomech. 2007;40(14):3169-77. doi: 10.1016/j.jbiomech.2007.04.001. Epub 2007 Jun 13.
6
In vivo functional assessment of a novel degradable metal and elastomeric scaffold-based tissue engineered heart valve.
J Thorac Cardiovasc Surg. 2019 May;157(5):1809-1816. doi: 10.1016/j.jtcvs.2018.09.128. Epub 2018 Nov 22.
8
St Jude Epic heart valve bioprostheses versus native human and porcine aortic valves - comparison of mechanical properties.
Interact Cardiovasc Thorac Surg. 2009 May;8(5):553-6. doi: 10.1510/icvts.2008.196220. Epub 2009 Feb 3.
10
An investigation of the effect of freezing storage on the biaxial mechanical properties of excised porcine tricuspid valve anterior leaflets.
J Mech Behav Biomed Mater. 2020 Jan;101:103438. doi: 10.1016/j.jmbbm.2019.103438. Epub 2019 Sep 16.

引用本文的文献

1
Computational construction and design optimization of a novel tri-tube heart valve.
Biomech Model Mechanobiol. 2025 Jun;24(3):1103-1121. doi: 10.1007/s10237-025-01956-5. Epub 2025 May 26.
2
Acellular fish skin for wound healing.
Int Wound J. 2023 Sep;20(7):2924-2941. doi: 10.1111/iwj.14158. Epub 2023 Mar 16.
3
Single shot quantitative polarized light imaging system for rapid planar biaxial testing of soft tissues.
Front Bioeng Biotechnol. 2022 Sep 21;10:1010307. doi: 10.3389/fbioe.2022.1010307. eCollection 2022.
4
Biomaterials in Valvular Heart Diseases.
Front Bioeng Biotechnol. 2020 Dec 9;8:529244. doi: 10.3389/fbioe.2020.529244. eCollection 2020.
5
Multiscale mechanics of the cervical facet capsular ligament, with particular emphasis on anomalous fiber realignment prior to tissue failure.
Biomech Model Mechanobiol. 2018 Feb;17(1):133-145. doi: 10.1007/s10237-017-0949-8. Epub 2017 Aug 18.
6
Multiphoton microscopy for label-free identification of intramural metastasis in human esophageal squamous cell carcinoma.
Biomed Opt Express. 2017 Jun 21;8(7):3360-3368. doi: 10.1364/BOE.8.003360. eCollection 2017 Jul 1.
8
Quantitative differentiation of normal and scarred tissues using second-harmonic generation microscopy.
Scanning. 2016 Nov;38(6):684-693. doi: 10.1002/sca.21316. Epub 2016 Apr 25.
9
The Effect of Sterilization Methods on the Structural and Chemical Properties of Fibrin Microthread Scaffolds.
Macromol Biosci. 2016 Jun;16(6):836-46. doi: 10.1002/mabi.201500410. Epub 2016 Feb 4.

本文引用的文献

2
Time-dependent biaxial mechanical behavior of the aortic heart valve leaflet.
J Biomech. 2007;40(14):3169-77. doi: 10.1016/j.jbiomech.2007.04.001. Epub 2007 Jun 13.
4
Planar biaxial creep and stress relaxation of the mitral valve anterior leaflet.
Ann Biomed Eng. 2006 Oct;34(10):1509-18. doi: 10.1007/s10439-006-9183-8. Epub 2006 Oct 3.
5
Autologous human tissue-engineered heart valves: prospects for systemic application.
Circulation. 2006 Jul 4;114(1 Suppl):I152-8. doi: 10.1161/CIRCULATIONAHA.105.001123.
6
Biaixal stress-stretch behavior of the mitral valve anterior leaflet at physiologic strain rates.
Ann Biomed Eng. 2006 Feb;34(2):315-25. doi: 10.1007/s10439-005-9027-y. Epub 2006 Feb 1.
7
Stability and function of glycosaminoglycans in porcine bioprosthetic heart valves.
Biomaterials. 2006 Mar;27(8):1507-18. doi: 10.1016/j.biomaterials.2005.08.003. Epub 2005 Sep 6.
9
Effect of sample geometry on the apparent biaxial mechanical behaviour of planar connective tissues.
Biomaterials. 2005 Dec;26(35):7504-13. doi: 10.1016/j.biomaterials.2005.05.056.
10
Improved prediction of the collagen fiber architecture in the aortic heart valve.
J Biomech Eng. 2005 Apr;127(2):329-36. doi: 10.1115/1.1865187.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验