Suppr超能文献

主动脉心脏瓣膜小叶的时间依赖性双轴力学行为。

Time-dependent biaxial mechanical behavior of the aortic heart valve leaflet.

作者信息

Stella John A, Liao Jun, Sacks Michael S

机构信息

Engineered Tissue Mechanics Laboratory, Department of Bioengineering and the McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.

出版信息

J Biomech. 2007;40(14):3169-77. doi: 10.1016/j.jbiomech.2007.04.001. Epub 2007 Jun 13.

Abstract

Despite continued progress in the treatment of aortic valve (AV) disease, current treatments continue to be challenged to consistently restore AV function for extended durations. Improved approaches for AV repair and replacement rests upon our ability to more fully comprehend and simulate AV function. While the elastic behavior the AV leaflet (AVL) has been previously investigated, time-dependent behaviors under physiological biaxial loading states have yet to be quantified. In the current study, we performed strain rate, creep, and stress-relaxation experiments using porcine AVL under planar biaxial stretch and loaded to physiological levels (60 N/m equi-biaxial tension), with strain rates ranging from quasi-static to physiologic. The resulting stress-strain responses were found to be independent of strain rate, as was the observed low level of hysteresis ( approximately 17%). Stress relaxation and creep results indicated that while the AVL exhibited significant stress relaxation, it exhibited negligible creep over the 3h test duration. These results are all in accordance with our previous findings for the mitral valve anterior leaflet (MVAL) [Grashow, J.S., Sacks, M.S., Liao, J., Yoganathan, A.P., 2006a. Planar biaxial creep and stress relaxatin of the mitral valve anterior leaflet. Annals of Biomedical Engineering 34 (10), 1509-1518; Grashow, J.S., Yoganathan, A.P., Sacks, M.S., 2006b. Biaxial stress-stretch behavior of the mitral valve anterior leaflet at physiologic strain rates. Annals of Biomedical Engineering 34 (2), 315-325], and support our observations that valvular tissues are functionally anisotropic, quasi-elastic biological materials. These results appear to be unique to valvular tissues, and indicate an ability to withstand loading without time-dependent effects under physiologic loading conditions. Based on a recent study that suggested valvular collagen fibrils are not intrinsically viscoelastic [Liao, J., Yang, L., Grashow, J., Sacks, M.S., 2007. The relation between collagen fibril kinematics and mechanical properties in the mitral valve anterior leaflet. Journal of Biomechanical Engineering 129 (1), 78-87], we speculate that the mechanisms underlying this quasi-elastic behavior may be attributed to inter-fibrillar structures unique to valvular tissues. These mechanisms are an important functional aspect of native valvular tissues, and are likely critical to improve our understanding of valvular disease and help guide the development of valvular tissue engineering and surgical repair.

摘要

尽管在主动脉瓣(AV)疾病的治疗方面不断取得进展,但目前的治疗方法在持续长时间恢复AV功能方面仍面临挑战。AV修复和置换的改进方法取决于我们更全面理解和模拟AV功能的能力。虽然之前已经研究了AV瓣叶(AVL)的弹性行为,但生理双轴加载状态下的时间依赖性行为尚未得到量化。在当前研究中,我们使用猪AVL在平面双轴拉伸下进行了应变率、蠕变和应力松弛实验,并加载到生理水平(60 N/m等双轴张力),应变率范围为准静态到生理状态。结果发现应力-应变响应与应变率无关,观察到的滞后水平较低(约17%)也是如此。应力松弛和蠕变结果表明,虽然AVL表现出显著的应力松弛,但在3小时的测试持续时间内蠕变可忽略不计。这些结果与我们之前对二尖瓣前叶(MVAL)的研究结果一致[Grashow, J.S., Sacks, M.S., Liao, J., Yoganathan, A.P., 2006a. Planar biaxial creep and stress relaxatin of the mitral valve anterior leaflet. Annals of Biomedical Engineering 34 (10), 1509 - 1518; Grashow, J.S., Yoganathan, A.P., Sacks, M.S., 2006b. Biaxial stress - stretch behavior of the mitral valve anterior leaflet at physiologic strain rates. Annals of Biomedical Engineering 34 (2), 315 - 325],并支持我们的观察结果,即瓣膜组织是功能各向异性的准弹性生物材料。这些结果似乎是瓣膜组织所特有的,表明在生理加载条件下能够承受加载而无时间依赖性影响。基于最近一项表明瓣膜胶原纤维本质上不是粘弹性的研究[Liao, J., Yang, L., Grashow, J., Sacks, M.S., 2007. The relation between collagen fibril kinematics and mechanical properties in the mitral valve anterior leaflet. Journal of Biomechanical Engineering 129 (1), 78 - 87],我们推测这种准弹性行为的潜在机制可能归因于瓣膜组织特有的纤维间结构。这些机制是天然瓣膜组织的一个重要功能方面,可能对于增进我们对瓣膜疾病的理解以及帮助指导瓣膜组织工程和手术修复的发展至关重要。

相似文献

3

引用本文的文献

2
Viscoelastic modelling of the tricuspid valve chordae tendineae tissue.三尖瓣腱索组织的粘弹性建模
Appl Math Model. 2022 May;105:648-669. doi: 10.1016/j.apm.2021.12.028. Epub 2022 Jan 13.
3
Materials Advances in Devices for Heart Disease Interventions.用于心脏病干预的设备的材料进展。
Adv Mater. 2025 Jul;37(27):e2420114. doi: 10.1002/adma.202420114. Epub 2025 Apr 17.

本文引用的文献

4
7
The flexural rigidity of the aortic valve leaflet in the commissural region.主动脉瓣叶在瓣叶联合区的抗弯刚度。
J Biomech. 2006;39(16):2966-73. doi: 10.1016/j.jbiomech.2005.10.026. Epub 2005 Dec 19.
9
From stem cells to viable autologous semilunar heart valve.从干细胞到有活力的自体半月形心脏瓣膜。
Circulation. 2005 May 31;111(21):2783-91. doi: 10.1161/CIRCULATIONAHA.104.498378.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验