Kronja Iva, Kruljac-Letunic Anamarija, Caudron-Herger Maïwen, Bieling Peter, Karsenti Eric
Department of Cell Biology and Biophysics, European Molecular Biology Laboratory, Heidelberg, Germany.
Mol Biol Cell. 2009 Jun;20(11):2684-96. doi: 10.1091/mbc.e08-10-1051. Epub 2009 Apr 15.
In metaphase Xenopus egg extracts, global microtubule growth is mainly promoted by two unrelated microtubule stabilizers, end-binding protein 1 (EB1) and XMAP215. Here, we explore their role and potential redundancy in the regulation of spindle assembly and function. We find that at physiological expression levels, both proteins are required for proper spindle architecture: Spindles assembled in the absence of EB1 or at decreased XMAP215 levels are short and frequently multipolar. Moreover, the reduced density of microtubules at the equator of DeltaEB1 or DeltaXMAP215 spindles leads to faulty kinetochore-microtubule attachments. These spindles also display diminished poleward flux rates and, upon anaphase induction, they neither segregate chromosomes nor reorganize into interphasic microtubule arrays. However, EB1 and XMAP215 nonredundantly regulate spindle assembly because an excess of XMAP215 can compensate for the absence of EB1, whereas the overexpression of EB1 cannot substitute for reduced XMAP215 levels. Our data indicate that EB1 could positively regulate XMAP215 by promoting its binding to the microtubules. Finally, we show that disruption of the mitosis-specific XMAP215-EB1 interaction produces a phenotype similar to that of either EB1 or XMAP215 depletion. Therefore, the XMAP215-EB1 interaction is required for proper spindle organization and chromosome segregation in Xenopus egg extracts.
在非洲爪蟾卵提取物的中期,整体微管生长主要由两种不相关的微管稳定剂,即末端结合蛋白1(EB1)和XMAP215促进。在这里,我们探讨它们在纺锤体组装和功能调节中的作用及潜在冗余性。我们发现,在生理表达水平上,两种蛋白质对于正常的纺锤体结构都是必需的:在没有EB1或XMAP215水平降低的情况下组装的纺锤体很短,并且经常是多极的。此外,DeltaEB1或DeltaXMAP215纺锤体赤道处微管密度的降低导致动粒-微管附着错误。这些纺锤体还表现出极向通量率降低,并且在后期诱导时,它们既不能分离染色体,也不能重组为间期微管阵列。然而,EB1和XMAP215在调节纺锤体组装方面并非冗余,因为过量的XMAP215可以补偿EB1的缺失,而EB1的过表达不能替代降低的XMAP215水平。我们的数据表明,EB1可能通过促进XMAP215与微管的结合来正向调节XMAP215。最后,我们表明破坏有丝分裂特异性的XMAP215-EB1相互作用会产生与EB1或XMAP215缺失相似的表型。因此,XMAP215-EB1相互作用对于非洲爪蟾卵提取物中正常的纺锤体组织和染色体分离是必需的。