Suppr超能文献

傅里叶反卷积揭示了洛伦兹函数作为窄光子束卷积核的作用。

Fourier deconvolution reveals the role of the Lorentz function as the convolution kernel of narrow photon beams.

作者信息

Djouguela Armand, Harder Dietrich, Kollhoff Ralf, Foschepoth Simon, Kunth Wolfgang, Rühmann Antje, Willborn Kay, Poppe Björn

机构信息

Medical Radiation Physics Group, University of Oldenburg, Oldenburg, Germany.

出版信息

Phys Med Biol. 2009 May 7;54(9):2807-27. doi: 10.1088/0031-9155/54/9/015. Epub 2009 Apr 15.

Abstract

The two-dimensional lateral dose profiles D(x, y) of narrow photon beams, typically used for beamlet-based IMRT, stereotactic radiosurgery and tomotherapy, can be regarded as resulting from the convolution of a two-dimensional rectangular function R(x, y), which represents the photon fluence profile within the field borders, with a rotation-symmetric convolution kernel K(r). This kernel accounts not only for the lateral transport of secondary electrons and small-angle scattered photons in the absorber, but also for the 'geometrical spread' of each pencil beam due to the phase-space distribution of the photon source. The present investigation of the convolution kernel was based on an experimental study of the associated line-spread function K(x). Systematic cross-plane scans of rectangular and quadratic fields of variable side lengths were made by utilizing the linear current versus dose rate relationship and small energy dependence of the unshielded Si diode PTW 60012 as well as its narrow spatial resolution function. By application of the Fourier convolution theorem, it was observed that the values of the Fourier transform of K(x) could be closely fitted by an exponential function exp(-2pilambdanu(x)) of the spatial frequency nu(x). Thereby, the line-spread function K(x) was identified as the Lorentz function K(x) = (lambda/pi)[1/(x(2) + lambda(2))], a single-parameter, bell-shaped but non-Gaussian function with a narrow core, wide curve tail, full half-width 2lambda and convenient convolution properties. The variation of the 'kernel width parameter' lambda with the photon energy, field size and thickness of a water-equivalent absorber was systematically studied. The convolution of a rectangular fluence profile with K(x) in the local space results in a simple equation accurately reproducing the measured lateral dose profiles. The underlying 2D convolution kernel (point-spread function) was identified as K(r) = (lambda/2pi)1/(r(2) + lambda(2)), fitting experimental results as well. These results are discussed in terms of their use for narrow-beam treatment planning.

摘要

窄光子束的二维横向剂量分布D(x, y)通常用于基于子野的调强放射治疗、立体定向放射外科和断层放射治疗,可视为二维矩形函数R(x, y)与旋转对称卷积核K(r)卷积的结果。矩形函数R(x, y)表示射野边界内的光子注量分布,卷积核K(r)不仅考虑了吸收体中二次电子和小角度散射光子的横向输运,还考虑了由于光子源相空间分布导致的每个笔形束的“几何展宽”。目前对卷积核的研究基于对相关线扩展函数K(x)的实验研究。利用未屏蔽的硅二极管PTW 60012的线性电流与剂量率关系以及小能量依赖性及其窄空间分辨率函数,对不同边长的矩形和正方形野进行了系统的跨平面扫描。通过应用傅里叶卷积定理,观察到K(x)的傅里叶变换值可以由空间频率ν(x)的指数函数exp(-2πλν(x))紧密拟合。由此,线扩展函数K(x)被确定为洛伦兹函数K(x) = (λ/π)[1/(x² + λ²)],这是一个单参数、钟形但非高斯的函数,具有窄核心、宽曲线尾部、全半高宽2λ和方便的卷积特性。系统研究了“核宽度参数”λ随光子能量、野大小和水等效吸收体厚度的变化。在局部空间中,矩形注量分布与K(x)的卷积产生了一个简单的方程,该方程能准确再现测量的横向剂量分布。潜在的二维卷积核(点扩展函数)被确定为K(r) = (λ/2π)1/(r² + λ²),也拟合了实验结果。根据它们在窄束治疗计划中的应用对这些结果进行了讨论。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验