Suppr超能文献

用于设计神奇子弹的计算机辅助药物筛选方法:抗HIV富勒烯衍生氨基酸的成功实例

In silico drug screening approach for the design of magic bullets: a successful example with anti-HIV fullerene derivatized amino acids.

作者信息

Durdagi Serdar, Supuran Claudiu T, Strom T Amanda, Doostdar Nadjmeh, Kumar Mananjali K, Barron Andrew R, Mavromoustakos Thomas, Papadopoulos Manthos G

出版信息

J Chem Inf Model. 2009 May;49(5):1139-43. doi: 10.1021/ci900047s.

Abstract

A database has been derived from recently reported [60]fullerene derivatives, and their binding scores with HIV-1 PR have been computed using docking techniques. Computational methods have been used to predict which derivatives may have high binding affinities, and for these compounds biological tests have been performed with purified PR. Experimental results confirm the high binding scores of fullerene derivatives predicted from the docking calculations. Our measurements showed that the fullerene derivative (Fmoc-Baa) has about three times better inhibitory binding (K(i) = 36 nM) than the most active fullerene-based inhibitor (K(i) = 103 nM) currently available.

摘要

已从最近报道的[60]富勒烯衍生物中构建了一个数据库,并使用对接技术计算了它们与HIV-1蛋白酶(PR)的结合分数。已使用计算方法预测哪些衍生物可能具有高结合亲和力,并对这些化合物用纯化的PR进行了生物学测试。实验结果证实了对接计算预测的富勒烯衍生物的高结合分数。我们的测量结果表明,富勒烯衍生物(Fmoc-Baa)的抑制性结合(K(i)=36 nM)比目前可用的活性最高的基于富勒烯的抑制剂(K(i)=103 nM)约高三倍。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验